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MECHANISM OF FLUTTER
A THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE
FLUTTER PROBLEM '

By TreoporE THEODORSEN and I. B. GARRICK

SUMMARY

The results of the basic flutter theory originally devised
in 198/ and published as N. A. C. A. Technical Report
No. 496 are presented in a simpler and more complete
form convenient for further studies. The paper atftempts
to facilitate the judgment of flutter problems by a syste-
matic survey of the theoretical effects of the various param-
eters. A large number of experiments were conducted on
cantilever wings, with and without ailerons, in the
N. A. O. A. high-speed wind tunnel for the purpose of
verifying the theory and to study its adaptability to three-
dimensional problems. The experiments included studies
on wing taper ratios, nacelles, atiached floats, and external
bracings. The essential effects in the tramsition fo the
three-dimensional problem have been established. Of
particular interest is the existence of specific flutter modes
as distinguished from ordinary vibration modes. On the
basis of the concepts introduced, results that are apparently
paradozical could logically be brought into conformity
with the theory. In fact, it is shown that there exists a
rather remarkable agreement between theoretical and
experimental resulis. A simple method is presented for
numerical caleulations of the flutter speed by routine
operations, requiring no reference to the theory. Appli-
cation is made to @ complete numerical example. The
matter of identifying possible types of flutter in an airplane
and of determining the parameters is briefly discussed.
A section treating the subject of forced vibrations of a
wing in an air stream and the question of air damping
in its relation to flutter is included.

INTRODUCTION

The theory of flutter.—The problem of flutter is
passing through a period of rapid development. Full
cognizance is taken of the value of the theory; a simple
or an empirical understanding of this problem is not
available and could, at best, be of value only to the
investigator. An exact treatment of the basic flutter
problem in two-dimensional flow, involving the im-
portant functions F and.@ relating to the air forces,
was given by Theodorsen in 1934. (See reference 1.)

These functions are simple combinations of Bessel
functions; they have been rederived in related form
by Cicala (reference 2) in 1935, by Kassner and
Fingado (veference 3) in 1936, and also by Kiissner
(reference 4) in 1936, who pointed out the identity of
the functions. At about this time, Garrick (reference 5)
also established a check on the general functions ¥ and
G by comparing them with expressions by Wagner,
Glauert, and von Kérmén and Burgers for special cases.

The system of equations as given in the original
paper is a

(4) %A-+o2B+aC+ED+BIE+EoP+ha
—2(a+%)%0(k)2=0

(B) oH-+aT+ BT+ B3R+ L+ hM+ 2 OE) Z—0

™
(©) aN+az0+BP+B3Q-+hBHRS+2L00) Z=0

where 4, B, C, etc., are given on page 10 of reference 1.

b, (1 i
Lot 5 (50 )t 5

and (table 1)
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L

) =F (k) +iG(k)

Putting :
= aoei(wl'hpo)
ﬁ = ,306‘ (wite;)
h=hoei(w1+p2)
where

kv

W=

the determinant of the coefficients of «p, B, 2nd hy

-becomes

Roatilse Roptiles Bantilon
k6| Roat-11 b Rbs'*‘if 88 -Z_Bbh'*"iI oh
Rca+'£Icc: Rcﬂ‘l"’i/IcB Rch+ifch
where the R’s and I's are listed in the appendix.
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This determinant put equal to zero contains two simul-
taneous equations, the solution of which determines X
and 1/k from which the (unknowns) flutter velocity and
flutter frequency are obtained. Only the diagonal
terms with bars contain the quantity X. All terms
contain or are functions of 1/k. .

The work of numerous investigators, notably Becker
and Foppl, has shown that the structural friction is
mainly & function of amplitude, not of frequency.
The structural friction can be described by a force in
phase with the velocity but of a magnitude proportional
to the restoring force. With each restoring-force
term, say aC,, there will be a friction term ‘e g, C., in
which g. is the damping coefficient. The net result is
very simply that the restoring-force terms «C., 8C;,
and kG, have been replaced by terms of the form «C,
(1-+1g9.), BCs(1+1gs), hC,(1+1g,). These friction coef-
ficients occur only in the diagonal I terms of the deter-
minant.

Technical flutter problems and the flutter param-
eters.—Experimental evidence, some of which is pre-
sented later, has been accumulated which indicates
that, in the two-dimensional problem, the flutter speed
can be closely predicted from the theory if the para-
meters are given with accuracy. (In fact, it seems that
in some cases the flutter speed can be used to determine
some parameters more precisely than by a direct
method.) In the two-dimensional problem of flexure-
torsion-aileron flutter, about a dozen different quantities
are required to calculate the flutter speed. The
determination of these parameters requires technical
skill and experience and is perhaps the most difficult
step in the solution of the flutter problem. A knowledge
of the functional dependency of ‘the flutter speed on
each parameter is essential in order to obtain sufficient
accuracy in the determination of the important ones
and to prevent waste of time on those of less influence.
This need is partly the purpose of the material given in
this paper.

One of the problems in conmection with an actual
airplane is the identification of the combination of
vibration modes that may cause flutter. In regard
to wing flutter, in the case of flexure-torsion, the situa-
tion is fairly clear. It will be shown that normally the
most important parameter is the center-of-gravity
location. This constant can be obtained with consider-
able accuracy in the design stage. An accurate value
of this parameter can also be experimentally obtained
as the “dynamic” torsion axis, that is, the axis around
which the wing, owing to the low bending frequency,
oscillates when put into torsional resonance. The
location of the (static) torsional stiffness axis is much

more difficult to calculate or to determine experimentally-

but fortunately, as will be observed, its effect on the
flutter velocity is small.

The internal damping coefficients are, moreover, of
fairly small influence in flexure-torsion flutter; these
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parameters are also fairly difficult to obtain. On the
whole, however, it may be said that this case of
flutter can be fairly well handled.

Another important case, that of the combination
flexure-aileron, was shown by the original study
(reference 1) to be an essentially different type of
flutter from flexure-torsion. Its primary characteristic
is that, normally, the flutter is limited to a range of
speeds. Below and above the extremes of this speed
range there is aerodynamic stability, A reduction of
the static moment of the aileron with respect to the
hinge (balancing) reduces the range; that is, the lower
limit is raised and the upper limit is lowered. Damping
in the structure is found to have the same general effect.
Sufficient internal friction will, in fact, completely
eliminate the danger of flutter, as will also complete
mass balance or the proper combination of both.
The structural friction of a wing system, although not
readily predictable, can be obtained by a ground test.

In regard to the tail assembly, the difficulty is some-
what greater since it may not be easy to identify the
most dangerous combination or to predict or even to
measure the necessary parameters, including the
structural damping. It therefore seems that certain
empirical or semiempirical aids will be required and
that it will be necessary, for a time at least, to resort
to flight-test methods as a final assurance against tail
flutter.

The transition to the three-dimensional case of actual
flutter is quite complex. It is necessary to consider an
aerodynamic span effect (which fortunately is very
small, see reference 6); the variation of the parameters
along the span; the possibility of higher-order deflec-
tion modes; and, in certain cases, fractional span effects,
as for partial ailerons. The most promising manner
of attack on such problems is by means of the two-
dimensional treatment with the introduction of certain
weight functions and average parameters in conjunc-
tion with a study of representative models of reason-
able simplicity, followed by a crystallization of the
collected experience into generally applicable semi-
empirical correction factors. The present paper malkes
initial studies with this purpose in mind.

It is realized that, for high values of the flutter speed,
a correction must be made for the effect of compressi-
bility. In the first order, this effect is due to a change
in the slope of the lift curve. The air forces in the
steady case are kmown to be increased approximately
in the ratio 1/4/1—M?, where M is the Mach number.
Consequently, a decrease in the flutter speed, roughly
as (1—M?)' is expected. This correction, although
small through the usual flight range, becomes appreci-
able for speeds near sound speed. Until experimental
verification is available, such correction is preferable
to none and should be applied for high-speed airplanes.

(See footnote 2, p. 9, for details.)
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Content of paper.—A straightforward scheme is pre-
sented in the first section for routine calculation of the
flutter speeds in the two-dimensional types; case 1,
flexure-torsion; case 2, flexure-aileron; and case 3,
torsion-sileron; and, in the three-degrees-of-freedom
type, flexure-torsion-aileron. A numerical example,
referring to a modern large airplane, is included.

The second section deals with a survey of the effect
of the flutter parameters on the ecritical velocity.
The effect of changing the parameters within certain
practical limits in cases 1, 2, and 3 is shown by & num-
ber of charts. .

The discussion in the third section deals with the
transition to a three-dimensional case, showing how a
“representative” two-dimensional wing may be used
to give the essential results. Both uniform and tapered
cantilever wings are included. The question of the
probable occurrence of higher-order bending modes in
flutter is also discussed. The effects of “friction” and
“coupling” are especially pronounced in higher-order
(lutter.

It is pointed out that the deflection mode occurring
in flutter is quite different from that of the static
condition and that the lowest bending frequency
involved in flutter is greater than that of the lowest
ordinary vibration mode. A new concept of flutter,
that the mode arising in flutter is such that the flutter
speed is & minimum, is then introduced. In other
words, if all primary variables including friction could
be included in the analysis, the actual mode would be
determined from all possible modes as the one giving
the minimum critical speed. This concept is useful in
explaining certain otherwise paradoxical, experimental

facts. The extreme difficulty of a direct analytic

attack on the general case, even if all the physical
parameters were specified, justifies the adapting of the
two-dimensional treatment supplemented by empirical
information obtained on actual wings. In fact, as will
later be shown, the corrections are small.

Almost 100 separate experiments were conducted
in the 8-foot high-speed tunnel. The fourth section
deals with the experimental tests and results. About
one-half of these tests pertain to flutter of wings in
flexure-torsion; the rest pertain to aileron fAutter.
Cantilever wings of aluminum and of built-up wood
construction were used. The tests were performed on
a conveniently large scale, most of the wings having a
chord of 1 foot and & span of about 7 feet. The air
speeds ranged from 50 to about 300 miles per hour,
A number of safety devices had to be employed to
prevent the ruin of the tunnel equipment.

A section is included showing the theoretical effects
of the air damping on the forced vibrations of a two-
dimensional wing system. This study leads to a more
comprehensive understanding of the flutter condition,
since it studies not only the critical speed but also the
approach to this speed. A number of figures are pre-
sented that show the nature of the response curves in
both one and two degrees of freedom. It is perhaps
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worth mentioning that von Schlippe (reference 7) has
employed an experimental flight method for deter-
mining the critical flutter speed, which is based upon
the use of an impressed alternating exciting force.
The practical value of experiments of this nature is
yet somewhat doubtful since the flutter usually comes
on rather explosively. In any case, the theoretical
results are of interest because they indicate the critical
frequency as well as the growth of the maximum
response as the critical speed is approached.

METHOD FOR ROUTINE CALCULATION OF FLUTTER
SPEED

The calculation of the flutter speed can be reduced
to a routine procedure by the following scheme. Noth-
ing more involved arises than the calculation of the
numerical values of double and triple determinants.

Given are a maximum of seven original parameters
Ky T'o?y @, Ty T6%, T, ¢, from which are formed the 18 con-
stants Au, A, Ag, Ap,, ete., defined as follows:

2
Au="E4 (34

Aa2=<%_af)

e _Tr, . (rs Ty
ABI_K 7r+(c a)<x 7r)

1
Aﬁ2=7;[—2p'—<%— a)T,:I

1
Aﬁa=;r(T4+Tm)

To
An="—¢
k1l X

2
Bu="t T4 e~ a2~ L) =4,

K T
1 1
Bu=1(p—T—37,).
1
Bﬂ =%§ _—‘T3

1
Bﬂz= —ﬁT4T 11

1
Bﬁs=,n‘Tz(Ts_T4Tlo)
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+ These constants are obtained from the original varia-
bles and from the T table (table 2) given at the end of
the report.

Another set of qua,ntltles Riey Ioa, etc., will be
needed; their expressions are as follows:

Raa= - -Aal + ('i - (1/2> .2_](3@— ('%—*-

r= s (Lo (- )or]

1 Ty Ty 2G| Tho Tho 2F
By=—BntpBa—g, 95 F 132 7 PP
_ 1 Ty T102G T12 Tn )
Ibp—z(Bsz"}' % 7 k 211' or

2G

R =—Cm k

Icn:.IngF

These six quantities are derived from the constants
already given and from two additional quantities F and
@, which are functions of 1/k. The quantlty 1/k is,
in reality, the independent variable in the problem.
The quantities 7' and & occur in the forms 2F, 2F/[k%
and 2G@/k; their values are given in table 1 for different
values of 1/k. In order to facilitate the calculation of
these quantities, the parts depending on 1/k are given
in tables 3 and 4.

Additional constants involved are the frequencies
Qa, s, and ©,, defined under the scheme for each case,
and three damping constants ga, gs, and g». Generally
all these constants are not simultaneously needed.
The four cases will next be solved.

Case 1.—The problem is given by two quadratic
equations, for convenience referred to as the ‘real”
and the “imaginary” equations. The coefficients of
each are given in the calculation scheme presented in
the following section. The coefficient of the first term
in each equation involves the constants g. and g», the
coefficients of internal friction or structural damping,
which are given as original constants. The coefficient
of the second term of each equation involves the g’s
and the R’s and I's, just defined. The constant term
in each of the equations is obtained by the schematic
arrangement shown in the caleulation scheme; it is
made up from certain constants 4;, By, ¢, and D,
together with the quantities 2F, 2F/k* and 2G/k. The
quantities 4;, B;, Ci, and D, are simple determinants
built up from the constants A, etc.

The coefficients of the two equations must be calcu-
lated for a fixed value of 1/k; these coefficients are then
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substituted into the equations and the solution, that
is, the value of X, is found. The real equation usually
has two solutions, and the imaginary equation usually
has one. The values of X, or preferably of /X, are
then plotted against 1/k, and the procedure is repeated
until continuous curves representing the two equations
are obtained. (Attained judgment or the knowledge
of the solution of similar cases may considerably reduce
the labor involved because it is then possible to choose
reasonable values of 1/k at the start. For wings and
ailerons, 1/k is usually less than 5, very often around
1 or 2.) The point of intersection of the two curves
represents the flutter point. Read off the values of
X and 1/k. The flutter speed is then given by the
expression

_resbl 1
=~ EVX

Case 2—The coefficient of the first term in each of
the two quadratic equations again involves the con-
stants of internal friction gs and g». The coefficient of
the second terms is built up as in case 1. The constant
term is built up likewise. Proceed as outlined for
case 1. The critical speed is then

w,,bl 1

TREVE

where 1/k and X are the values at the intersection point
of the curves representing the real and the imaginary
equations, respectively. There are usually two critical
speeds.
Case 3.—Case 3 requires a more laborious calculation
of the constant terms; otherwise, the procedure is the
same as for cases 1 and 2. The flutter speed is given by

’rawab 11

e FE

Three degrees of freedom.—The case of three degrees
of freedom requires the solution of two third-degree
equations in X. The constants of the first, the second,
and the third terms are readily recognized as containing
only quantities already used under cases 1, 2, and 3.
The expressions for the constant terms of the two
equations, D? and D7, involve three-row determinants
but can be obtained by straightforward calculations
for each value of 1/k. The point or points of inter-
section of the two curves representing the equations
are again representative of the critical speed, which is
given by

Wb

.__Ta
. R

-

1
k
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CALCULATION SCHEME

Case 1 (A, a).—
Real equation:

Coeflicient of X?: 2,Q,(1—¢;9.)
Coefficient of X: Q,,(Ra,,—g,,Ia,,)-}—Q (Ber—galcrn)

Constant: M® —Al—l—& T +01 7

Imaginary equation: !
Coeflicient of X2: 2,Q.(g,-g)
Coefficient of X: @y (Raagh + Iaa) +Q. (Rchga +Ich)

Constant: MJ=%(D1+01%T'—BI2F>

Aal Ahl
Oal Ohl

Ao —G+a)|,
o LG —a)|

O — —G+a) An . A —(%-HI/)
= 1 Ohl 0a2 1 ’

_ |[An—4e —Gto
Cn—Ca 1

Aa2 Ahl
0a2 Ohl

A1=

("2‘+a') Ay

Bi= O

(@Y1
sz,.—<wa =
7 Wa \?
X‘?(:)
rawab 11

Vi EYX

Case 2 (8, b) —
Real equation:

Coefficient of X2: 40, (1—gsgs)
Coefficient of X: Qs(Rs—gsl )+ Ros—gnlss)

1\24¢ I
-k2 +02 k2

Constant: M,®=A,+A,+— lc2+(B2+
Imaginary equation:

Coefficient of X2: Qﬁﬂ,,(gp+g,:)

Coefficient of X: (Borgst L)+ Ropgnt+Iop)

1 Note that when the friction coeflicients g are zero, a factor 1fk can be canceled out
of all terms in all imaginary equations.

Constant: M,’=5 I:D2-|— C.5=

(BZ +B, 1.:2) 2F]

Bﬂl Bhl|
051 Clhl

BB3 Bbl

B3 Ohl

A2=

Az="‘

Tl2 T12 Bhl

Tuis>

Bﬂl |+ 27
1 Cn

Bﬁ?Tm

Cp 1

Bs, Bi
Ch: Ont

h=
2
=(28) e
% (wh) i
i)
K

whbl 1

TVREVE

T
_Tuwj52 By
"It Cn

Case 3 (o, 5).—
Real equation:

Coeflicient of X2: ,95(1—g.g8)
Coefficient of X: Qu(Bos—gulss) +2(Rou— gﬂIacz)

Constant: M33=A4+A3F2+<B3+B3kl2)%¥

—= 1\2F
+(a+ T )L

Imaginary equation:
Coeflicient of X2: Q.Q(g,4gs)
Coeflicient of X: Qo(RusfatIop) + 95 (RouagstIoe)

Constant: My = %[Ds-f-ﬁg,]l?-i- <03+ 53%2)"‘%;

—(Ba-}-B—s %2)21?]
1w 4
As—]Bal Bﬂil
Ao — Ao Agil Awe Aﬁzl
s Bal BﬂSI 02 Bﬁz
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—(&%’—}-a) Ap TuAax —(&%1‘;'0')
=(Z— =
By=(—a) 2_17‘2_ BB1+27TB¢!1 _2%’:
_ —(%;!—a) Agl o [Aa —G+a)| |—Gte) 4p
—_(i— —_Zw —
By=—(3—0) 28 Bu " x(Ba  H 52 -
—G+a) An| g JAe =G0 5 lda —GF0| |-G+ A
G=—G-a| Le pl-5p Lo =72 Ty |- In p
27 B2 a2 2 TP 2ar 2 81
_ —(G+a) 4g
Ci= T
D3__Aozl ABZ_AaZ Aﬁll
-Bal BﬁZ Bcﬂ Bﬂl
T Aaz Aﬂs
Dy= B Bg:
Q=1

_[ws 2 78 2
93_(“’&) (ra)
X=7iz ‘2)2

K «
ot 1 1
Vxk BEJX

Three degrees of freedom with friction.—

Real equation:
Coefficient of X3: Q.9Q,(1 —gags—gegn— g1ga)

Coeficient of X2 Q.Q[(1 —¢ugs) Ren— (Gt g5) Leal + (1 —9595) Boa— (g5+91) Laa]
F Q[ (1—grga) Rosg— (gh+ga)Ihﬁ]

Coefficient of X: Qu(M:E— gD+ Qp(DMyE— gelliF) + O (M — gnDL5T)
e oyl =1\2¢ = 1\2F
Constant: DR_R+RP+(S+S@>7+(T+T 2
Imaginary equation:
Coefficient of X3: Q.25 (ge-9s+ 9n-+9agsgs)

Coefficient of X2 Q.Qs[(1—¢ugp) L+ Gatga) Benl + 0L (1 —gogn) Laat (g8t gn) Radl
+Qh9a[(l_ghga)-[bﬂ+ (gh'*‘,got)RbB] .

Coefficient of X: Qo (Mo goMR) +Qp(MyT+gsMi®) -+ (MT 4 g1 M)

o =1 ~1\26 1
Constant: D’—Z[U—}— DF+<T+TP>—]C— <S+S 2)2F:|
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Aal Aﬁl Ahl

-Bal Bﬂl Bhl
Oal OBI Ohl
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R=—

Aal ABS Ahl
Ba Bg B
Oal 0ﬁ3 Ohl

A Aﬁz An
R=

-Ba‘Z Bﬁz Bhl
0«2 OB2 Ohl

+

da Ap —(G+a) —G+ao) A4s An A —(%j’-*—a) An
S=_' Bal Bﬁl 12‘;;2_ _(‘%'—a/) g_;: Bﬁl Bhl —%Bal -2—;': Bhl
Cu Ca 1 1 Cp Cn Can 1 Chl-

Aal Aﬂ3 —(’%+(L)

—G+a) A4 An
§= Bal Bﬁ3 T12

Ap A —(3+0a)

A —G+a) 4An
T Te |, T 4
o [t 3x Be But|Be Bp —,° |+74B. . 30  Ba
0&1 Oﬁs 1

1 Co Ol |Cuz Cs, 1

Ca 1 Cn
—('21’+ll) Ag Ay

+(G—a) 'g—;: Bgy Bu
1 Css Cn

A App —(3+a)

Aoz A —(3+0)
T= -Bal sz —Ziz

—(G+a) 4pn Au

—(G+a) Ap An
T T 1 Ty
oy +|B.: Ba e -+ o Bgy By |+G—w P Bg By
Oal 052 1 Oag 051 1 1 0,51 0);1 1 062 Ohl
A —(G+a) An A —(34a) An
T 1 T
+?10 B 2—;2_ B +‘2—;1, B ?2%,2- B
Oal 1 Ohl 0::2 1 ) 0),1
—@G+a) Agp An| |Ae 4p — (o)
- T, T,
T=— 2_;2_ Bﬁs Bm - -Ba2 Bﬂs 2_;2_

1 Cs Onl |02 Chs 1
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Aal Aﬁz Am Aaz Aﬁl Ahl
U= |Ba Bs B+ |Bee Bﬁl B

Ca Gﬂz Cn Co 081 01:1
_ A.ﬂ Aﬁs .Am
U=—|Ba Bgs Bu

Cow Cs Cn

Note that five of the determinants occurring in the
expressions for T’ and I’ occur also in the expressions
for S and S.

= —)( )
(YL
Qh_(“’a To
x-(s)
K w

Tawabd 1 1

TV EYX

NUMERICAL EXAMPLE

The following example refers to a modern large

airplane. The parameters, which were furnished by
the manufacturer, are:
k=0.25 7.2=0.25
a=—04 ¢=0.6
2,=0.2 ' 15=0
7g?=0.0012

A verbal description of the representative parameters
used in the example is: wing density, o, about 2.5
pounds per square foot per chord length (in ft);
stiffness-axis location, 30 percent of the chord from the
leading edge; center-of-gravity location, 40 percent of
the chord from the leading edge; aileron length, one-
fifth of the total chord; balanced aileron (center of
gravity of aileron at hinge axis, z3=0). (The structural
damping coefficients g., gs. and g, will be kept zero,
corresponding to a safety factor.) It is not necessary
to specify the chord length 26 and the torsional fre-
queney o, until the final step. The following fre-
quency ratios, however, are specified:

E&)=f
(&)=

That is, the torsional frequency is four times the bend-
ing frequency and the aileron frequency is 1.22 times
the bending frequency. The constants from which are
composed all the determinants in the calculation
scheme are tabulated as follows:
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Aa1=1.285 Bar=0. 02374 Ca1=1.2
az= .9 a3== . 04009 Caz=1
Ap= .02374 Bpi= . 007028 Cp= .02322
Apa= .23679 Bg= .021177 Cpy= .14238
Aps= .40744 Bgs= . 01651 Cps=0
An=1.2 Bu= .02322 'm=5.0

—(—;—i-a)=—o.1 ﬂ:ooosw AR

The equations are written explicitly for 1/k=1, that
is, 2G/k=—0.2006, 2F=1.0788, 2F/k*=1.0788.

Case 1 (lexure-torsion).—

Real equation:
The coefficient of X?is

1 1
'1—6><4X1-—Z

The coefficient of X is

%(—1.285—0.12593)—{—1 (—5.04-0.2006) = —5.15213

The constants

A;=4.985
1=_0.125

01=0.7

D1=‘—3.3

Hence the constant term is

MF=4.9854(—0.125) (—0.2006)
+0.7(1.0788)=5.76524

The real equation is then
3X°—5.15213X+5.76524=0

Imaginary equation:
The coefficient of X is -

%(0.9—0.07703)+1(1.0788)=1.28454

The constant term A7 is

—3.3+0.7(—0.2006)— (—0.125)(1.0788) =
The imaginary equation is then

—3.30557

1.28454 X—3.30557=0

The roots of the real equation are X=1.187 and
19.421, and the root of the imaginary equation is
X=2.573, or

+/X=1.089, 4.407, and 1.604

These values of /X are plotted against 1/% in figure 1.
The curves traced by plotting the roots are shown in the
figure. The intersection is at +/X=1.594, 1/k=2.46.
The flutter speed is then

246

1)—2><2X1 594 wa=1.542bw,
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In the present example, the chord 25 is 12 feet and w.
is 90 (corresponding to a torsional frequency of 859
cycles per minute); bw, is then 540 feet per second or

9
8
6
7
6
5 4
4 -
3
I SSE=aD
P / ™
L \
= I
/ v
R
0 7 2 3 4 0 1 2 3.
Vi Yk

FIGURE 2.—Case 2. Numerical
example. The roots /X of the
real and the imaginary equa-
tions against 1/k.

FIGURE 1.—Case 1. Numerical example.
The roots +/X of the real and the imagi-
nary equations against 1/k.

about 368 miles per hour. Hence the flutter speed is,
for this case, 567 miles per hour.?

Case 2 (flexure aileron).—
Real equation:

The coeflicient of X2?1is

$x0.0012X1=0.0018

The coefficient of X is

0.0018(—5--0.2006)+1(—0.007028+-0.020470)=
0.004803

2 The compressibility correction: Let the calculated flutter speed for the incom-
pressible fluid be »¢ and let the corresponding speed for the compressible fluid be o,
Denote pife by M; and v /e by M., where ¢ is the velocity ofsound. Then (see Intro-
duction)

1

M maa
or, on solving for M2,

’ Ms M3
2= M2 LT L
M2=M; < 1 1 ) )

M2, Mt )
Tt
2 8 ttt

=Mg

=~M2

For example, with 0;=567m. p. h., M;=567/760=0.746, M .=0.650, and y.=494m.p.h.
Noto that the example given refers to sea level; at altitude, the example should be
based on another value of x and an appropriate value of the velocity of sound.
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The constants

A;=0.034601
A,=—0.08255
B,=0.008152
B,=—0.016510
= —0.024980
D,=—0.10258

The constant term A;F=—0.07322.
The real equation is then
0.0018.X%--0.004803X—0.07322=0

Imaginary equation:

The coefficient of X is

0.0018><1.0788+4-1(0.021177-4+0.0003184)=0.023437
The constant term M,'=—0.088554
The imaginary equation is then
0.023437.X—0.088554=0

The roots of the real equation are X=5.182 and
—7.85 and the root of the imaginary equation is X=
3.778 or (for the positive roots) /X=2.276 and 1.944.
These values of /X are plotted against 1/k in figure 2.
The curves traced by the roots are shown in the figure.
Since no intersection exists, this case is stable.

Case 3 (torsion-aileron).—

Real equation:
The coefficient of X2 is
3 .,0.0012
1X'3—§X
The coefficient of X is

1(—0.007028-0.020470)+0.00045(—1.285—0.12593)=
0.012807

025 =0.00045

The constants

A;=0.008468 C;=—0.003129
A;=—0.021110 C;=—0.004241
B,=0.000799 D;=—0.026964
B,=0.002090 D,=—0.001474

The constant term M,F=—0.021173
The real equation is then -
0.00045X%-4-0.012807.X—0.021173=0
Imaginary equation:

The coefficient of X is
(0.021177-40.0003184)-+0.00045(0.9—0.07703)
=0.021865

The constant term A;7=—0.030076
The imaginary equation is then
0.021865.X—0.030076=0
Theroots of the real equation are X=1.567 and —30.03
and the root of the imaginary equation is X=1.375
or (for the positive roots) /X=1.252 and 1.173.
These values for the VX are plotted against 1/k in
figure 3. The curve traced by the roots is shown in the
figure. Sincenointersection exists, thiscaseisalsostable.

Three degrees of freedom (flexure-torsion-aileron).—

Real equation:
The coefficient of X3 is
1>X0.00045<X %=0.0001125
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The coefficient of X? is
0.00045(—4.7994)+-0.0001125(—1.41093)
+4%(0.013442)=0.001042

The coefficient of X is

1(—0.07322)+0.00045(5.76524) -+ % (—0.021173)
=—0.07592

The constants are
R=-—-0.032848 T7'=0.017042
R= 0.077092 T=0.028790
S=—0.004381 U=0.103485
"S=—0.000344 U=0.017720

The constant term D®=0.094635

The real equation is then

0.0001125X34+0.001042.X2—0.07592X+0.094635=0
Imaginary equation:

The coefficient of X2 is
0.00045(1.0788)4-0.0001125(0.82297)+ %(0.021495)
=0.005952

The coefficient of X is
1(—0.088554)--0.00045(—3.30557)+ %(—0.030076)
=—0.097561

The constant term D7=0.11711
The imaginary equation is then
0.005952.X2—0.097561.X-+0.1171=0

The positive roots of the real equation are X=1.270
and 21.0 and the roots of the imaginary equation are
1.302 and 15.08, or /X=1.126 and 4.58, and 1.141
and 3.883. These values of /X are plotted against
1/k in figure 4. The curves traced by the roots against
1/k are shown in the figure. The intersection is at
JX=1.06, 1/k=0.875. Hence

r=3x2X S Dps, = 0.826b0se
For 2b=12 feet and w.=90, the flutter speed is 304
miles per hour.

These examples have been selected from several
listed under the last part of the following section, to
which the reader may refer for other examples, includ-
ing the case of an unbalanced aileron.

THEORETICAL SURVEY OF THE EFFECT OF THE
FLUTTER PARAMETERS

The purpose of this section is the study of the effect
on the critical speed of the various independent varia-
bles. Although the theory in itself permits the solution
of any particular case without difficulty, it is somewhat
difficult to obtain a perspective of the effects of the
parameters. Because of the many variables, this survey
has been limited to the magnitudes and the ranges of
most practical interest. It is realized that the effect of
increasing or decreasing a certain parameter is depend-
ent on the values chosen for the others. As a mathe-
matical experiment, it is possible to change one variable
and to keep all the others constant. With reference to
practical problems, however, the change of one param-
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eter is usually accompanied by unavoidable changes
in several of the others. This fact must be kept in
mind when actual or proposed changes intended to
increase the flutter speed of airplanes are considered.
This discussion is intended to give only the salient
facts; the charts contain the complete data.

CASE 1 (FLEXURE-TORSION)

The flutter speed for case 1 is plotted in the coefficient
form v/bw.. In the following graphs, the frequency
ratio wfw, is generally used as abscissa and the critical
flutter coefficient v/bw., as ordinate.

The graphs under each of the following sections of
case 1 are arranged in order of decreasing values of «,
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FI1GURE 4.—Three degrees of freo-
dom. Nuimerical example. Theo
roots /X of the real and tho
imaginary equations against 1/k.

1/k

FIGURE 3.—Case 3. Numerical ex-
ample. The roots 4/X of the real
and the imaginary equations
against 1/k.

starting with x=1/2 (lightest wings) and ending with
k=1/20 (heaviest). The range of x for present-day
airplanes is approximately x=1/3 to x=1/15, The
graphs are further arranged in order of increasing
values of a, starting with the smallest values of @
(stiffness axis in the most forward location). In most
cases, the radius of gyration is kept at a fixed value
rl=1/4.

Effect of center of gravity x..—The effect of x. on
flutter speed is given in graph I-A. It may be observed
that there is usually a decrease in the critical speed as
the frequency ratio w,/w, is increased from zero and
that the curves tend to a minimum near the frequency
ratio wj/w.=1. There are cases, however, in which
the minimum ecritical speed lies at wpfw.=0. The
transition takes place for a certain small value of ..
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Graph I-A (a-i).—The effect of za; the flutter coefficient against the frequency ratio; ra?=1/4. Case 1 (h. ).
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This value is greater the larger the values of x (light | speed near unity frequency ratio from zero to infinity.
wings). For instance, when x=1/4, a value of .= | As may be observed later, structural damping will
about 0.1 (graph I-A (g)) brings the minimum near the | greatly alter the shape of the curve in this range.
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Graph I-C (a-j).—The effect of zo; the futter coefficient against 1/x; r*=3¢. Casel(}, ).

origin. For k=1/10, x, must be close to zero (graph The range of most practical importance is, however,
I-A (m)) to cause transition. The transition is critical; | the neighborhood of .the zero frequency ratio. (For
graph T-A (m) shows that a 2.5-percent change in the | wings, the ratio is approximately 1/4.) In this range,
position of the center of gravity changes the flutter | the parameter of greatest significance is really the com-
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bination 3+a-+2.. In other words, the flutter speed
is very nearly a function of the location of the center of
gravity with respect to the forward quarter-chord posi-
tion and not of the distance relative to .the stiffness
axis. Graph I-B (a) shows clearly that the value of a
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light wings (k=1/3 to 1/5). Graph I-C (d) gives very
normal values of the parameters as used for most wings.
These curves, for a given wing, may be taken to give the
effect of altitude. Note that, for a given wing with
k=1/5 at sea level, x becomes 1/10 at approximately
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QGraph I-D (a-c¢).—The effect of structural friction; the flutter coefficient against the frequency ratio; k=¥o; a=—0.2; zo=0.1. Case 1 (B, a).

actually has no influence on the flutter speed. Outside [ 15,000 feet, with a resulting increase in the flutter
of this range, that is, for larger values of w;/w,, the rela- | speed under normal circumstances. For the case with
tionship is less simple. Graph I-B (b) shows the | 2.=0.2 given in graph I-C (d), the increase in the
dependency on the center-of-gravity location for various | flutter coefficient is from 1.6 to 1.95, or about 20 percent.
positions of the stiffness axis a. For a constant z., | It is possible that, for very light wings, the flutter
that is, for a constant distance between the stifiness | speed might decrease with altitude until a certain
N7 '
< \(//,3
5~
2T Citd T~ | \N

N o] B |

L s /

3 i S AU \ . Al

S 7 7N / [ - NN

N N\ [1] NVl
Y [/ A\
\\ . / X//
), {1~} 7))
“(?1 \1?/ v \Tl W/
0o 2 4 6 &8 10 Lo 2 4 & 8 Lo 12 0 2 4 6 8 1o 12 14
Wy e
@) =%. () x=Ho. o () x=Yo.

Graph I-E (a-c¢).—The effect of radius of gyration; the flutter coeflicient against the frequency ratio; a=—0.2,zo= 0.1. Case 1 (4, a).

axis and the center of gravity, the flutter speed is
increased as the stiffness axis (and center of gravity)
is moved forward. )

Graph I-C shows the flutter coefficient plotted against
1/k. The normal range of wings is included in the
diagram (the heaviest wings to the right). The dia-
grams are arranged in order of increasing values of
(wn/wa)? and of @. An interesting result is the existence
of & minimum critical speed that falls in the range of

altitude is reached. For high values of 1/x (heavy
wings), the flutter speed increases nearly as the square
root of the wing density, 1/«.

Effect of structural friction g., ¢g»—Graph I-D is
intended to show the effect of the structural friction on
the critical speed. As the coefficients of friction are
increased, there is a definite tendency for the often
pronounced minimum flutter speed near wsf/w.=21.0 to
disappear and to produce response curves of the type
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obtained for negative value of z.. In the range of most
practical interest (ws/w.==0), the torsional friction is
the more important.

Effect of radius of gyration r,.—Graph I-E is ar-
ranged in conventional order. Note that the flutter
coefficient in the low wxfw. range increases with in-
crease in the radius of gyration. This increase in the

flutter coefficient does not necessarily correspond to an -

increase in the flutter speed; it does if the torsional

frequency w. is kept constant. If the stiffness is

(Values in the preceding table are given in relation to
the value for x=1/5, r.2=1/5, which is the case of
lowest wing density and smallest radius of gyration.)
The speed corresponding to given stiffness drops if any
mass is added so that r., the density 1/k, or both are
increased. Hence, any mass added not for the purpose
of increasing the stiffness or moving the center of
gravity forward is detrimental.

Flutter frequency.—The flutter frequency is shown in
graph I-F. It is seen, for instance, that for small
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(a) x=1%; a=—0.4.
(¢) x=Yo; a=—04.

(b) x=3%; a=—0.2.
(d) x=%o; a=—0.2.

Graph I-F (a-d).—Flutter frequency ratio as dependent on z« against frequency ratio; ra2=1%4. Casel (s, a).

kept constant, which means that we 18 decreased as

1/r, the flutter speed is actually decreased, as is shown

in the following table. .
FLUTTER SPEED FOR CONSTANT TORSIONAL

STIFFNESS
la=—0.2, 2,=0.1, (wrfwea)?=0]

~J 15 174 13
15 100 97.6 92.4
1/10 9L 2 88.6 848
1120 84 832 80.2

values of wpfw., the flutter frequency is around 60
percent of the torsional frequency w.; for higher values
of the flexural frequency, the flutter frequency ap-
proaches or exceeds the torsional. This graph is
primarily of interest in connection with experimental
flutter research.

Coupling factor £.—Consider a two-dimensional case
of flutter in which only a part of the total length of the
(infinitely long) wing is given the second degree of

freedom. This arrangement, because of the deficient
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coupling, exhibits a higher critical speed. Call the
fraction having both degrees of freedom, £. The results
are shown for several values of £ in graph I-G.

Divergence velocity and approximate flutter for-
mula.—It can be shown that the divergence velocity
may be expressed. in nondimensional form as

Up__  [rd 3
bo. V'x Jta

The divergence velocity vpfbw. is given in graphs
I-A. This velocity is usually higher than the flutter
velocity.

An empirical expression, which is useful in quickly
obtaining the order of magnitude of the flutter speed
for small values of wy/w, and which appears to hold very
well for heavy wings (with «<1/10) is given by

1

U (Ta 3
bo. ¥V & YHtata.
Graph I-B (a) shows the curve obtained from the

empirical expression (dashed) and a curve based on the
exact values (in full lines).

CASE 2 (FLEXURE-AILERON)

The flutter coeflicient for case 2 is v/bw,. The fre-
quency ratio wgfw, is ordinarily used as abscissa. The
graphs are again arranged in order of increasing wing
density. Two values of the location of the aileron
hinge axis ¢ have been included. The first value, ¢=
Y%, or the aileron chord equal to 25 percent of the total
chord, is intended to represent a wing-aileron combina-
tion; the second value, ¢=0, or the aileron chord equal

OF FLUTTER
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to 50 percent of the total chord represents a stabilizer-
elevator or a fin-rudder combination. Several values
of zg and 7¢ and of the damping coefficients g5 and g5
have been included. :

It should be mentioned that ordinarily, as shown in
reference 1, case 2 differs basically from case 1 by the
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Graph I-G.—The effect of the coupling factor £; the flutter coefficient against the
frequency ratio; x=%o; a=—0.2; z.=0.2.

existence of a flutter range extending between a lower
and an upper flutter speed. This range of flutter can
be reduced or eliminated by various means. It is im-
portant also to notice that, beyond a certain value of
the frequency ratio wg/ws, in fact, for a value slightly
greater than unity, no critical speed exists, since the
critical ares does not extend much beyond this point.
The reduction of the center-of-gravity distance from the
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(c) Effect of gg and ga; k=¥ o; rs2=¥e0; Tp=Yo.

(b) Effect of zs; x=%¥o; rs?=%20.
(d) Effect of rg?; k=% o; zs=160.

Graph IT-A (a-d).—Flutter coeflicient against frequency ratio; c=34. Case 2 8, h).
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hinge has the effect of reducing and finally eliminating
the critical flutter area. Internal damping shows the
same general effect. The fact that the aileron extends
effectively over a shorter length is theoretically ex-
pressed by a “coupling factor” & which is the length
of the aileron divided by the total length of the wing
executing deflection. The effect of £ is shown in some
of the graphs.

Effect of frequency wgfw, (¢=Y%).—Graphs II-A (a)
and (b) show the effect of varying zs in reducing the
critical area. The effect of damping is shown in graph
II-A (c) and, finally, the effect of r4* in graph II-A (d).

Effect of center of gravity zz (c=%).—Graph II-B
shows the flutter coefficient against the center-of-
gravity distance zs, giving, for two values of x, the
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be defined for each value of the frequency ratio. It is
necessary then to choose the largest frequency ratio or
the smallest unbalance, then to calculate the other
value, and finally to choose the most practical combi-
nation, using a margin of safety.

Effect of radius of gyration 73 (c=¥).—Graph II-C
shows, for a typical wing-aileron case, the effect of
changing the radius of gyration for various values of
the frequency ratio.

Effect of frequency wg/w, (c=0).—In the preceding
graphs, the hinge axis was at ¢=J}. Graphs II-D,
II-E, and II-F show the results for c=0. The curves
are arranged in order and show the effect of xp, 7%
gn, and g for k=% and ¥o. One curve is also included
for k=% (graph II-D (d)).
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(8) c=14; x=14; ra*=%zo. (b) e=3; x=1; rg*=3fo.

() c=¥; x=¥o; rs?=¥zo. (d) c=34; x=14; rs*=1foo0.

Graph II-B (a-d).—Flutter coefficient against zp for various frequency ratios. Case2 (8, k).

effect of varying the frequency ratio wgfws at three
values of rg%. Note that for large z; (beyond normal
range) the type of flutter reverts to that of case 1; that
is, the upper flutter speed becomes infinite for a certain
value of xg.

It is important to notice, by considering each curve
in this figure, that s must be decreased below a certain
value, which is rather critical, in order to avoid flutter.
If xp is larger than this value, the lower flutter speed
remains at & virtually constant, small value. The
frequency ratio exhibits a similar effect; that is, flutter
is eliminated beyond a certain frequency ratio often
greater than unity, whereas for smaller ratios, the
lower flutter speed remains at a low, nearly constant
value. In other words, a critical frequency ratio can
be defined for each value of the unbalance and, in-
versely, a definite critical value of the unbalance can

Effect of center of gravity xzz (¢=0).—The figures
are given in graph II-E, arranged as usual. -

g 1
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o
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o 004 .008 .02 .0/6 .2020 024 .028 .032 .036
. ks
Graph II-C.—Flutter coefficient against rg? for various frequency ratios; e=14; k= Yo}
zg=36o. Case2 (8, h).

Effect of coupling factor (¢=0).—In graph II-F the
effect of the coupling factor £ is shown for an extreme
case of unbalance (x5 large). The superimposed effect
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Graph II-D (a-d).—Flutter coefficient against frequency ratio, showing effect of zg, gs, and gs; c=0. Case 2 (8, h).
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of damping is shown for the zero frequency ratio.
Notice how the coupling factor (£—>0) gradually
eliminates the flutter area.

CASE 3 (TORSION-AILERON)

Three graphs, ITI-A, III-B, and ITI-C, are presented.
There is a similarity to case 2. Graph ITT-A shows
how the internal damping increases the lower flutter
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Graph II-F.—Effect of coupling factor §; flutter coefficient against frequency ratio;
¢=0; x=14; rg?=134;zs=34 (an extreme case of unbalance). Also effect of friction for
wafwa=0.

speed. Graph IIT-B represents data taken from an
actual case of a light wing with a smaller aileron.
Note the striking similarity to case 2. For the value
25=0.0066 (completely unbalanced aileron), ws/w«.
must be greater than 0.6 to avoid flutter; for the more
normal value 3=0.002, wgfw. need only be =0.1.
The flutter area is eliminated by reducing xzz to a
slightly smaller value.

Case 3 (torsion-aileron) is probably of less practical
importance because the elimination of flutter for case

BT T T 4] Jotgt0
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Graph III-A.—Effect of friction coefficients ga, gs; futter coefficient against fre-
quency ratio; ¢=0.5; x=13{0; a=—0.4; ra3=3; z8=10; rg*=%eo. Case 3.

2 ordinarily excludes the possibility of flutter in case
3; but it is noted that, in order to eliminate mass
coupling in the torsion-aileron case, a complete balance
of the aileron in the ordinary sense (z3=0) is not quite
sufficient. It is actually found in the case of a heavy
wing and no internal friction (with zz=0) that the
flutter speed is low, particularly near ws=w.. Even
o slight amount of friction, however, is sufficient to
cancel the cause of this flutter. Graph IIT-C (fairly
heavy wing) shows that, for no friction, a small over-
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balance (z5<{0) is necessary to eliminate flutter.
For light wings, the effect is less pronounced and
2=0 is usually sufficient. It may be observed from
the original set of equations that true balance against
rotation implies 72+ (¢—a) xp=0.

THREE DEGREES OF FREEDOM

In order to familiarize the reader with the complete
case of three degrees of freedom and its relationship to
the three subcases, a set of typical figures is shown.
The constants used are the same as those in the numeri-

cal example (p. 8) with some additions. Case
2.0
151
z, =,0066
Sl d
1.0
B
5P1.002
L1
0 .25 .50
e,

Graph ITI-B.—Eflect of zs; flutter coeflicient against frequency ratio; ¢=0.6; x=14;
a=—0.4; ra?=14; r52=0.0012. Case 3(a, §).

1 is shown in figure 1 under the numerical example.
The flutter coefficient v/bw,=1.542.

Case 2 is shown in figure 5; each part of the figure
refers to different combinations of 2z and ws/w,. No
flutter occurs for the combinations shown in figures
5 (a) and 5 (b) because of the balanced aileron and
none in figure 5 (d) because of the large aileron fre-
quency. For the combination shown in figure 5 (c),
there is a normal range of flutter with two flutter points
shown.

Case 8 is shown in figure 6; each part refers, respec-
tively, to the same aileron parameters used in case 2.
(Note that wsfwe is % in all eases.) The combinations

5.0

7
w7z
4
20—
3 (wWsfwn )2 = 0 | =
= T  —
20 = <
A a5 /
1O~ T
, [T I o -
9565 0 005 .0/0 015 020 .025 .030
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Graph III-C.—Flutter coefficient against zp for various frequency ratios. ¢=0.5;
x=¥Yo; ra¥=14; rg?=%go; a=—0.4. Case 3.

shown in figures 6 (a) and 6 (b) are again stable because
of the aileron mass balance. For the arrangement
shown in figure 6 (d), the aileron frequency is not high
enough to prevent flutter as it did in case 2. Condi-
tions are still worse for the combination shown in
figure 6 (c). !
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For the case of three degrees of freedom, figure 7
shows the results arranged in the same order as under
cases 2 and 3. For the conditions given in figures
7 (2) and 7 (b), flutter existed only in case 1. The
flutter point shown is therefore essentially case 1
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TRANSITION TO THREE-DIMENSIONAL FLUTTER
PROBLEMS
The previous theory relates to two-dimensional
flutter and, strictly, to a wing of infinite length. The
second restriction is not very troublesome, the aspect-

flutter. The value of the flutter coefficient, however, | ratio, or span, effect being relatively unimportant and
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(a) (:—:)2=o; z8=0. (b) (g—f)z=3l2; z5=0.

© (%ﬁ)zno; £5=0.0066. @ (:—i)’=812; zp==0.0066.

FI1GURE 7.—Three degrees of freedom. The roots /X of the real and the imaginary equations against 1/k. Same parameters as in numerical example excopt as indicated.

has actually decreased from its case 1 value of 1.542 to
0.70 and 0.825, respectively.

For the arrangement shown in figure 7 (d), flutter
exists in cases 1 and 3. Here the ranges completely
merge, indicating stability at only very low speed.
Tlutter exists in all three cases for the combination
shown in figure 7 (c). The case 2 flutter can berec-
ognized, almost unchanged, while again the flutier
ranges of case 1 and case 3 have merged, as in figure
7 (d).

Figure 8 has been included to show that there is a
considerable lowering of the flutter speed for low values
of the aileron frequency even though the aileron is
balanced. This condition is probably not of primary
concern because a small amount of friction, particularly
ga, will Testore the flutter speed to its full (case 1) value.
It is to be noted, however, that a slight overbalance
(x5<<0) may be desirable.

by no means as great as the aspect-ratio effect asso-
ciated with stationary flows. It may be disregarded

1.6 At co, casel value 1.54
1.2 e
3 1| .
% BIa—=
4
o 2 4 .6 8 10 12 14 16 [8 20
wsfer

FIGURE 8.—Flutter coefficient against frequency ratio wgfwe. Threo degrees of
freedom. x=0.25; a=—0.4; £a=0.2; ra2=1/4; ¢=0.6; z5=0; rp?=0.0012; ga=ga=0,
and tacitly considered as a safety factor, since an air
speed of the order of a few percent more than that in

two-dimensional flow is necessary to cause flutter.
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Consider the case of a rectangular cantilever wing.
Some authors have attempted a solution on the assump-
tion that the response curves in torsion and deflection
under normal conditions (zero air speed) may be used
in the flutter theory. Itis contended that this assump-
tion is false. Several rather interesting experimental
results will be presented in the next section, which
show directly and indirectly that the modes in flutter
differ radically from the ordinary ones. The following
questions arise: (1) Does the wing flutter in the first,
second, or third, etc., bending “mode”? (2) Are these
modes in any way related to the ordinary types of
vibration modes?

Consider first the case of a very high bending mode.
It is useful to consider the two-dimensional case as
representing the “averages’” of parameters and variables
of the three-dimensional case. The variable % now
appearing in the (two-dimensional) equations refers
to the “average’ h which approaches zero even though
the local A in the loops is very large. Itis, furthermore,
evident that the average curvatures are greater, the
greater the mode. Both these conditions are equiva-
lent to a large coefficient of internal damping, since
the work lost per cycle refers to a very small average h.

N

L]

FIGURE 9,—8chematic figure for higher-order bending mode of cantilever wing
restrained by wires and with deflections in phase.

It is probable that the second “flutter’”” mode involves
a much higher coefficient of damping and also consid-
erable uncoupling effect. A study of the graphs with
specific reference to the effect of damping shows that
higher flutter modes can be expected only under very
special circumstances. This fact does not mean that
flutter occurs in the lowest (zero air speed) bending mode.

The bending frequency in flutter of a cantilever beam
is determined by a certain minimum condition. The
wing will, of course, flutter at the lowest speed possible,
It will, therefore, not assume its lowest (stationary)
bending mode but will tend to assume a mode of a
higher frequency. Since this higher frequency tends
to uncouple the h degree of freedom, the actual response
ordinarily happens to be a cross between the first and
the second modes. Large internal friction will tend to
push the response closer to the first mode. The result
is a flutter speed distinctly lower than that calculated
on the basis of the frequency of the ordinary funda-
mental bending mode. The flutter speed calculated
by using the lowest bending frequency is too favorable.
In the case of wings of small internal friction (solid
metal wings), the actual flutter speed is only about 0.9,
the speed calculated on the basis of the lowest bending
frequency. In the case of conventional wings, the
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error is apparently in the order of only 1 or 2 percent, a
fortunate coincidence because it permits the use of a
small experimental-empirical correction. This point
of view is in harmony with the Rayleigh principle,
which states that any response function whatsoever
corresponds to a frequency higher than that of the
fundamental.

To recapitulate: The bending frequency involved in
the flutter of a cantilever wing is greater than that observed
at zero air speed; the more so, the lower the internal
damping of the wing structure.

This interesting phenomenon is demonstrated by the
photograph of the flutter of a uniform cantilever beam
(see fig. 18) presented in the experimental section,
which shows that the maximum amplitude is not at
the tip but is rather close to the middle of the span.

Another very convincing experimental proof of this
phenomenon, given in the experimental section of this
paper, is that a counterweight at the tip section in
front of the center of gravity actually lowers the
flutter speed of a uniform cantilever wing. For a
relatively small counterweight, the tip section is beyond
a node in the A curve. In this same connection,
another rather remarkable experiment was made: A
cantilever wing flutters at about 200 miles per hour.
The point where the node of the second bending mode
(at zero air speed) intersects the torsional stiffness
axis was fixed by connecting this point by wires to the
tunnel walls. The wing subsequently fluttered at
150 miles per hour. The flutter stopped when the wire
broke! The explanation is that the bracing wires
“couple” a bending mode that was previously entirely
‘“uncoupled.” It should be noted that the frequency
actually involved in this flutter is agair in excess
of that of the second bending mode (at zero air speed);
large forces are therefore transmitted through the wire
supports from the walls.

In order to illustrate more convincingly how the sup-
port wires lower the flutter speed, reference is made to
figure 9, which shows a high-order bending mode of a
wing. If this bending frequency is about equal to the
torsional frequency, the lowest flutter speed is obtained.
When the support wires are removed, the wing will tend
to vibrate about a fixed mass center line, with the result
that the average h deflection becomes zero and all A
couplings disappear. The a moments and the A forces
transmitted to the support are good measures of what
may be called the effective values of @ and h when the
two-dimensional theory is applied to three-dimensional
cases. For instance, the transmittal of & small A force
to the support indicates that the positive and the nega-
tive k values very nearly cancel. The & effect, although
locally large, may very nearly cancel itself. This fact
does not prevent the use of a certain (small) average or
effective kb in the calculations. With no internal fric-
tion, the flutter speed is not changed. As was pointed
out before, the use of the small effective & for higher
modes is, in reality, equivalent to employing a greatly
increased coefficient of internal friction.
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This discussion and associated experiments lead to the
important conclusion: A bracing wire may lower the
critical speed of a cantilever wing or fin. It usually does
lower the critical speed when the internal damping in
the structure is low.

For a rectangular cantilever wing, there is no difficulty
in regard to the other parameters. With the bending
modes considered known, the variables «, 8, and & were
given simply as average values and used in the two-
dimensional solution. Inspection shows that the flutter
speed of a uniform cantilever wing is essentially that of
the two-dimensional case involving the same parameters
and the proper frequency ratio.

A cantilever wing of normal tapered shape will next
be considered. It is assumed that there is a similarity
in construction along the span for each cross section.
The mass is put equal to a constant times the square of
the chord; static moments, to the third power; and the
moments of inertia, to the fourth power of the chord.
Further, the air force is proportional to the chord and
the acting moments are proportional to the secord
power.

Various weight factors of the form (3/b,)*f(x)dx are
obtained, where f(x)is a weighted wing parameter and
z is measured along the span. If the reference section
is chosen in such g location that, for a particular n=m,

[} e[ faa

which is always possible, then

[G) 10w e

In other words, the proper choice of a reference section
renders the weight factors of approximately equal magni-
tudes. If the reference section is taken too close to the
tip of the wing, there will be a certain positive correc-
tion; if chosen too close inboard, there will be a nega-
tive correction. The correct value is thus virtually con-
fined between definite limits. The most representative
section will He close to the three-quarter semispan
location.

In the two-dimensional case, the length along the span
is considered to be equal to unity and this unity is
treated as being large as far as span effects are con-
cerned. If the length is different for the two variables
considered, a slight modification of the theory is neces-
sary. HEach length is considered to be long enough to
permit disregard of aspect-ratio corrections for the air
forces.

This sort of consideration is of interest chiefly in the
case of ailerons and tail surfaces. The equation giving
the equilibrium of the ailerons refers only to the length
of the aileron. The included area of the & curve is
sometimes a small fraction of the total area under the
k curve. This fraction will be called £.
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The solution of the deflection-aileron case is given in
reference 1 by

Mo [Bos+iTos Bont+iln
o Rcﬂ+7;Icﬁ Rch+7:Ich

and with the effect of &:

Rog+ilos £(Ront-il5m)
Rcﬂ+'iIcﬂ Rch+'iIch

=0

M, = =0

Tt is noticed that the factor £<1 describes a certain

uncoupling of the system. The calculation of flutter
speed can be performed for any coupling factor &.
Again it should be remembered that the free-vibration
modes are not identical with the flutter modes. A
tendency exists for & to approach unity since the
aileron forces the motion of the wing.

EXPERIMENTAL FLUTTER RESEARCH

GENERAL

The purpose of the experimental research was, first,
to check the theory as regards accuracy and, second, to
provide a basis for an understanding of problems met
with in airplanes.

These tests, about one hundred in all, were conducted
in the N. A. C. A. 8-foot high-speed tunnel. (See
fig. 10.) In order to protect the propeller, a heavy
wire screen was inserted in the test section immediately
behind the flutter model. For convenience, models
having a flutter speed below 300 miles per hour were
tested.

The procedure followed was to increase the tunnel
speed slowly until flutter appeared. If the flutter was
of a violent type, the load was immediately dropped to
save the model. In the tests on ailerons, the lower
branch of the flutter curve was similarly obtained. The
upper end of the range was obtained by the following
method: The aileron was kept in place by restraining
wires attached to its rear end and running across the
tunnel. By manual operation of the wires from the
outside, the arrangement could be conveyed through
the dangerous range; on slackening the wires, the
operator would receive indication of incipient flutter
until the speed had increased above the dangerous
range. When the upper stable region had been
reached, the wires were completely released and the
conventional flutter-test procedure was reversed; that
is, the tunnel speed was slowly decreased until the
violent flutter appeared. The restraining wires were
then immediately tightened, and the speed was noted.
The effect of the very fine wire was shown to be negli-
gible in the released condition.

DESCRIPTION OF WING FLUTTER MODELS

All wings tested were cantilever wings and are based
on the section given in the following table.
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F1GURE 10.—Installation of wing 1 in 8-foot high-speed tunnel. The stop shown was used in only a few initial tests.

AIRFOIL SHAPE USED IN FLUTTER TESTS

-
. Ordinate y
Station z (per- .
cent chord) téﬁﬂi‘&uﬂ)
0 0
1.25 .460
2,5 . 600
5 .740
15° 580
15 . 940
20 . 960
30 1
40 . 960
50 .900
60 .780
70 .620
% “2i0
95 132
100 . 020

The frequencies of the various wings are given in the
main table of experimental data (table I). All section
constants were obtained both by calculation and by di-
rect testing. The basic section has its center of gravity
at 42.5 percent from the leading edge. The stiffness
axis is at 32 percent but was artificially put at 30 per-

cent in the case 1 tests by chordwise cuts. (See figs.
11 to 13.)

In addition to obtaining the flutter speed of the plain
wings, the effects of restraining wires, of mass balancing
counterweights in various locations, and of large nacelles
both at the wing and some distance away from it were
studied. Experimental data are included in table I.
In the aileron tests, the effects of mass balancing, hinge
location, frequency, and friction were investigated.

Wing 1.—Wing 1 (see fig. 10) was a rectangular can-
tilever wing model of }-inch duralumin plate of 12-
inch chord by J-inch thickness by a free length of 6
feet 9 inches perforated with closely drilled ¥-inch
holes and covered by a %so-inch sheet of duralumin
to give a smooth surface. The constants can be
obtained from data in the experimental table.

Wings 2, 8, and 4—Wings 2, 3, and 4 represent a
series of cantilever wings of the same root section (1-
foot chord by % inch thick), the same span (6 feet 9
inches), but having taper ratios, respectively, of 1:1,
2:1 and 4:1.  (See figs. 11, 12, and 18.) The wings are



126 REPORT NO. 685—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

made of duralumin and are constructed to give simi-
larity in strength and mass distribution. Note that
the detail at or near the tips is a scaled-down replica
of the detail at the root. The stiffness axis a is put at
30 percent chord or a=—0.4 by means of chordwise
cuts.

The three types of wing 2 (24, 2B, and 2C) were so
designated because the first one, 2A, finally showed a

FIGURE 11.—Rectangular cantilever wing 2A. Note chordwise cuts used for purpose
of lowering torsional frequency and for placing stiffness axis at 30 percent chord
from leading edge.

crack and had to be replaced with 2B, which is almost
identical. Wing 2B finally broke at the root, was
repaired by shortening it, and was used for some tests
under the designation 2C.

Wing 5—Wing 5 was also a solid duralumin rec
tangular cantilever wing of 1-foot chord, 4-foot length,
and l-inch thickness at the maximum ordinate; it was
used for aileron testing. (See fig. 14) Three ailerons
were tested, 14, 24, and 34 inches long with 2, 8, and
4 hinges, respectively. Most of the tests were per
formed on the 24-inch aileron (aileron A II).

Tests were made for different spring-restraints on
the hinge, with a balance counterweight on the out-
board end (fig. 15) and with a special arrangement
permitting the changing of the hinge axis from the
forward edge of the aileron to about 30 percent of the
aileron chord behind the center of gravity. '

F1GURE 12.—Tapered cantilever wing FI1GURE 13.—Tapered can-
3; taper ratio both in chord and tilever wing 4; taper
thicknessis2:1. Dimensional simi- 1atio, 4:1.
larity of cross section and cuts.

TFI1GURE 14.—Cantilever wing 5 used for aileron tests.
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Wings 6 and 7.—Wings 6 and 7 are model wings of
normal density built by covering a balsa structure with
As-inch mahogany. Wing 6 has the same external
dimensions as wing 2 (fig. 16). Wing 7 has a root chord
of 18 inches, & maximum thickness of 1.5 inches, and a
taper ratio of 3:2 (fig. 16). All tapered wings were
tapered equally in chord and thickness.

DISCUSSION OF EXPERIMENTAL RESULTS

The scheme already discussed of introducing flutter-
bending modes completely fits the experimental results
into the theoretical picture. Figure 17 shows the
theoretical flutter speed for wings 2A, 2B, 3, and 4
with the experimental points plotted. Wing 2A with

F10URE 15,~Wing 5 with aileron mass balanced by counterweight at outboard end.

a flutter speed of 202 miles per hour obviously bends in
a “first’”’ flutter mode that approaches the second bend-
ing mode in appearance and frequency (fig. 18). The
flutter frequency calculated on the basis of this bending
mode closely checks the measured flutter frequency
(ig. 19). Wing 3 checks equally well; its bending
frequencies are noted in table I. Wing 4, the most
tapered one, obviously collapsed (fig. 20) in the second
flutter mode. (See fig. 17.) On this assumption, its
experimental flutter speed also fits well in figure 17.
Since the effect of the bending mode was brought so
strongly into the picture, an independent study was
made on the rectangular wing 2B and on the tapered
wing 3 by attaching one point of the torsional axis
rigidly to the tunnel walls by restraining wires. The
results are shown in figures 21 and 22. Note that the
wire attached to the tip had no effect on the flutter
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speed, which fact again tends to prove the contention
that the flutter bending response is closely related to

FIGURE 16.—Rectangular wooden wing 6 (left) and tapered wooden wing 7 (right);
taper ratio, 3:2.

the second ordinary bending mode. Note also that the
observed minimum speeds correspond very nearly to
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FIGURE 17.—~Theoretical flutter speed based on constants pertaining to wings 24, 2B,
3, and 4. x=360; a=—0.4; Za=1; r?=0.3125; bw,=38.8 miles per hour. Experi-
mental test points are also shown, and flutter modes and frequencies are indicated.

the minimum theoretical speéd. (See fig. 17.) Of
practical importance is the fact that a stay near the
root of a wing gave a higher bending frequency and
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definitely lowered the critical speed. There existed
points, however, near the middle of both wings for

/ . 6 1] T T T T T
Flufter frequencies ;
I—7Theoretical N .
12|10 Observed, wing ZA el
: o ” - 3 L
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FI1GURE 19.—Theoretical flutter frequencies based on constants for wings 2, 3, and 4

with oxperimentally observed values for wings 2A and 3. x=1}§o; a=—0.4;2a=%4;
ra?=0,3125, Case 1{k, a).

10 1z /4 16

which the stays caused the flutter speed to attain a
large value. The explanation is that, with this point

g N TR
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fixed, the average b value becomes very small and
the kb deflection becomes “ineffective.” A relatively
high flutter speed results.

The matter of leading-edge counterweights has been
investigated, i particular on Wwing 2C. Tigure 23
shows the effect of moving a counterweight along the
span. The weight has a rather surprising negative
effect near the tip, indicating that, in this case, there
must be an kb node inside the tip and again substan-
tiating the theory of the flutter modes. Farther in
along the wing there was an expected increase in the
flutter speed. When all three weights were applied
at the same time, the flutter speed for wing 2C was
increased to 295 miles per hour, which is in good
agreement with the calculated value.

A large nacelle at an inboard position (fig. 24) in-
creased the flutter speed from 202 to 216 miles per hour
when in the forward position and decreased it to 197
when in the rearward position.

FIGURE 20.—The effect of violent flutter (in second mode) on wing 4.
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Large bodies disposed at some distance from the
wing, such as floats, were very detrimental as regards
the critical speed. (See fig. 25.)

Wing 1 showed a flutter speed that is in agreement
with the predicted value within about 1 percent. This
agreement is due to the considerable internal damping
of this wing. Wing 6, a rectangular wing of the same
plan dimensions as wings 1, 2, 3, and 4, but of low
density, showed a flutter speed about 3 percent below
the theoretical value based on the measured parameters
and the lowest ordinary bending mode. This result
indicates that, for damped, low-density structures, the
flutter mode approaches the first bending mode some-
what more than hitherto indicated.

‘Wing-aileron flutter has been studied on wing 5.
(See fig. 14 and table TA.) The theoretical response is
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FIGURE 21.—Experimentally observed flutter speed as depending on location of
restraining wire along axis of wing 2B.

shown with proper constants in figure 26 for the most
representative aileron ATI, upon which most of the
tests were made. A number of test points have been
directly plotted in this figure. In order to obtain
internal friction, a lead hinge was used in some tests.
It is rather remarkable how well the theory is re-
affirmed by the test data. Apparently, if all param-
eters could be satisfactorily determined, no flutter
testing would be necessary. Tests in which the hinge
axis (fig. 27) was changed show the beneficial effect of
decreasing the aerodynamic moment around the hinge.
The lower flutter speed, which is the one of practical
importance, is considerably increased as the hinge
axis is moved backward. This increase is not only a
center-of-gravity effect but is also caused by the de-
crease in the aerodynamic moment around the hinge.
Note that, as the center of gravity is approached, the
flutter speed rather suddenly becomes infinite.

AIR DAMPING OF FORCED VIBRATIONS

This report has heretofore been concerned with
a study of a border velocity separating stable and

REPORT NO. 685—NATIONAL: ADVISORY COMMITTEE FOR AERONATUTICS

unstable velocity regions. Further light on the whole
matter of flutter is given by a study of the vibration
response of the wing system to impressed forces and
moments, that is, generalizing the point of view
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FIGURE 22.—Experimentally observed flutter speed as depending on location of
restraining wire along axis of wing 3.

from free vibrations to forced vibrations. Instead

of the homogeneous system of equations (A), (B),

and (C) (see Introduction), impressed exciting forces

and moments introduced on the right-hand side of

these equations are considered. In equation (A) a
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FIGURE 23.—Effect of counterweights, Wing 20.
term M et [Mp?, in  equation (B) a term
M@t [Mb?,  and, in equation (C) a term

Pyeiottod[Mb are introduced. Here M, and M,
are the magnitudes of the sinusoidal impressed torques
in the « and B degrees of freedom, P, is the magnitude
of the impressed force in the i degree of freedom, w is
the circular frequency of the forced vibrations, and the
¥’s are cerfain phase angles.
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i -

FIGURE 24.—Nacelle on wing 24A. FIGURE 25.—Float attached to wing 3.
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Define , as the static torsional response to an impressed
moment Pyb

Then

Figure 28 is a photograph of a three-dimensional
model of the response ratio hyfh,, as a function of the
exciting frequency ratio w/w. and of the speed ratio
v/bw, for a case of deflection-torsion for which a critical
flutter speed exists. In this example, the exciting force
has been assumed to act in the deflection degree of
freedom alone (m=0). At zero speed there exist two
resonant frequencies corresponding to the natural fre-
quencies in the separate degree of freedom. The air
damping due to speed is zero and the response is infinite

) o ) at these frequencies. (With friction coefficients g, and

FIGURE 28.—Photograph of model showing forced vibration response in two degrees .
of freedom as depending on air speed. Note flutter point. Iy the responses are 3PPr0mmately 1/9« and 1/gh’
respectively.) As the speed increases, the air damping
increases and the response diminishes until, along one
frequency branch (the w, branch) the response becomes

It is convenient to define a certain static deflection
sy, which is the deflection due to force Py,

5 _Py_ P, negligibly small. Along the other frequency branch,
0, Mos? however, a minimum response is reached, after which
\I T T T , 7
100 Fregquerncy ratio
\ Lojv, =665
Flutter velocity ===
3 |
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FIGURE 29.—Peak response ridges of figure 28.

Then
ho|_ w2 NaJ1 16
|h—s, N
where 1
b= BTG
! L2
This result gives the steady-state deflection response 3 [0
ko in terms of the static deflection 4,, due to an impressed 3 ™~
force or moment. The results of some numerical RO D
calculations will shortly be presented. '
The torsional response can be similarly calculated. 8 [~
Let N, represent the determinant in the numerator of T
the expression for epei: 5 |
] 2 4 & 8 /0
M4 Ryil,, Vi
= = o5 F1GURE 30.—The roots of the real and the imaginary equations (pertaining to cass
1 BoA-ila shown in fig. 28) against 1/k.
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example cited, is shown in figure 30. The value of
Af is then obtained for various selected points
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the air damping decreases and the response increases

(usually rapidly) until the flutter point is reached. The
critical flutter frequency lies between the two critical | (1/k, w/w.) along A®=0. These values may be em-
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FIGURE 31.—Peak response hofhss against velocity o/bwa for the case x=¥o; a=—0.2; 2.=0.1; m=0; (wawa)?=%s5. The full curve refers to friction cocflicients ga=ga=0; the
dashed curve, to ga=ga=0.1. Casel (&, ).

frequencies that exist at zero speed. The two peak | ployed to determine A. The numerator is easily
response ridges for this case are shown in figure 29. | evaluated for these same values of 1/k, w/we. This
These curves, it may be observed, illustrate the essential | process determines the peak response with sufficient
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FIGURE 32.—Peak-response ridges for three values of friction coefficients ga=g4=0, 0.05, and 0.10. (x=}fo; a=—0.2;24=0.1; (whnwa)?=34). Case 1.
accuracy for a given value of 1/k and conversion
to speed is obtained by the relation v/bwe= (w/wa)
(1/k). Such response curves, calculated with and
without the effect of friction, are given in figures 31
and 32.

characteristics of the three-dimensional figure. The
procedure of calculation is as follows:

The equations AZ =0, A,’=0 are solved for w/w, for
various fixed values of 1/k, as already discussed, in
order to locate the flutter point. This plot, for the
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F1GURE 33.—Forced vibration response for deflection
degree of freedom (ga=0).

One degree of freedom (deflection).—Further light
on the two-degree-of-freedom case, deflection-torsion,
may be obtained by a discussion of the one-degree-of-
freedom cases, deflection alone and torsion alone.

When h=heei“t++? is substituted in the deflection
equation of motion,

Bt Bk i Tt =3

On the introduction of hs,=P,/C, (static response in
deflection to impressed force P,), it follows that

ﬂ=_<ﬂ) - 1y
hst K\w , (Rchz‘i‘lchz)i [(Ph_Ah)2+(ghrh+Bh)2]§

where
, h>2
@

A},= 1 +K(1 +'2—kg

Iy=

2F
Bh——KT

g» 1s the friction coefficient.

It is observed that the speed is determined by v/bw,=

(afen) (L/E). _ _
The resonance response is obtained by putting

0/0T|hofhs:|=0 and solving for T,. There results

T _(ﬂh Ah2+Bh
TN @ Jres Ah‘—ghBh
or
).t
Wy rec_ -Ah2+-Bh2

407300°—41——10

FIGURE 34.—Peak response ho/h.: against veloeity ratio ofbe ), for two values of the friction coefficient

g»=0 and g»=0.1. x=}%0.
The maximum response is then

<h_0> _ (42 +B)?
hst res Bh+ghAh

Figures 33 and 34 pertain to this case. The results
may be summarized as follows: The resonant frequency
is practically constant and is approximately w=w;.
The air damping at the maximum response is propor-

tional to B,,=x27ﬁ-, or, since the frequency is nearly

constant, the air damping at the maximum response
is proportional to xv. Away from the resonant fre-
quency, however, the response quickly becomes inde-
pendent of k. No flutter or self-excitation exists in
this case. At zero air speed, the maximum response
ratio is simply 1/gy.

One degree of freedom (torsion).—When a= qget(wt+e
is substituted into the « equation of motion

aOeim (Raa'}"ij—aa)’f"-’z: %Zz

On the introduction of a,=M./C. (static response in
torsion to impressed torque M, .,), it follows that

(%) wmrr
—_— P“

- [(Pa—Aa)z_*- (gara_*—Ba)z]%
where

e(3)
=i e (3o (g o) |
KZ%[‘;‘ (2 >—G "_“2>2F:|

g« is the friction coefficient.
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FIGURE 35.—Forced vibration response for torsion degree of freedom (axis at a=0;
xfra?=3%0; ga="0).
It is observed that the speed is determined by
Vfbwe=(wfw,) (1/k). Put 0fOT jaofcs{=0. Then
I‘ == —a-,—a>2 =——-Aa2+Ba2
e res Aa_gaBa

Q).
We, rzs_ Aa2 +-B a2

or
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FIGURE 36.—Peak response agfa.: against velocity ratio vfbwa for two values of tho
friction coefficient ga=0 and ga=0.1. a=0; «fra=2}fo.

of the torsional axis. The air damping at resonance is
essentially proportional to «/rs® and to the wave-
length parameter 1/k. For the quarter-chord position
of the axis, a=—0.5, the response ao/a, is very similar
to the deflection response hofhs: in the preceding case
(g. 33). For any position of the torsional axis back

of the quarter-chord point, however, a peculiar result
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FIGURE 37.—Peak response aofa:: against velocity ratio o/bwa for two values of a (0 and —14) and two values of (Yo and Y500). Case 1 (5, a).

The maximum response is then
ﬂ.) J— (A¢2+Ba2)’}'
Qsy r“_ Ba+gaAa

Figures 35, 36, and 37 pertain to this case. The
resonant frequency is strongly affected by the position

is obtained. The air damping increases with increase
in speed and the resonant frequency decreases; but a
speed is ultimately reached where the response increases
again until, at a vanishingly small resonant frequency,
the response is very large. In figure 35, which illus-
trates a case for the midchord position of the axis,
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rpi=Yeo; 2a=Yio; (wplwr)i=15).

=0, the peak response oceurs at »/bw,=7.10. This
sort of instability has been called divergence. The
divergence velocity can be easily calculated as follows:

Let wfw,—0, 1/k—« in the expression for ap/as:.

Then

Limit (ﬁ _ 1
1/k—>°° (27] ns— _ Kk l ) L)z
1 7‘a22<2+a (bwa
or
( v >2 _rd 12
bowfae & 1
gte
CASE 2 (8, )

A study of the response characteristics to forced vi-
brations is also of some interest in the case of flexure-
aileron. The details are omitted here. Two figures
are presented. An illustration showing the peak re-
sponse ratio Ay/hs, in this case with and without friction
is presented in figure 38. A response for one degree of
freedom of the aileron alone is shown in figure 39.

REMARKS ON FLUTTER IN AIRPLANES
WING FLUTTER

The wing may flutter as a whole in torsion-flexure.
This case is the most easily treated. Experience with
models indicates that this flutter speed may be calcu-
lated on the basis of the measured constants with an
accuracy of a few percent. The actual bending fre-
quency involved in flutter is apparently not exactly the
lowest ordinary bending frequency but a slightly
higher value. .

Probably the most common type of wing flutter is
case 2 (flexure-aileron). This type,. as well as that

/‘"r'equency ratio, wfws

FIGURE 39.—Forced vibration response of aileron alone
against frequency and velocity; friction coefficient gs=0.

involving torsion-flexure, is evidently symmetrical with
respect to the fuselage. The ailerons would therefore
be in phase and have a frequency considerably in excess
of the wing-bending frequency. This condition is
favorable. Any slack in the aileron cables, however,
permits a motion that may cause a mild type of flutter,
which should not be permitted for too long a time.

A nonsymmetrical aileron motion would involve a
second bending mode (nonsymmetrical). It is prob-
able that, in most cases, the node would be close to the
middle of the aileron and therefore poorly coupled.

There remains to consider a complete case of flutter
(torsion-flexure-aileron). Apparently cases do exist in
which this type would appear at the lowest speed. The
effect of the additional degree of freedom can probably
be taken care of by a safety factor applied to the flutter
speed obtained for two degrees of freedom. The cal-
culation of the case of three degrees of freedom is per-
fectly straightforward although more lengthy than the
simple cases.

TAIL FLUTTER

In regard to tail flutter, the situation is more complex.
The possible combinations are subdivided as follows
into three main groups, which will be separately
analyzed:

(1) Vertical flexure of tail assembly.

(2) Horizontal flexure of tail assembly.

(8) Torsion of tail assembly.

Vertical flexure.—It is possible, in general, to iden-
tify two responses in vertical flexure; one corresponding
to the fundamental bending mode of the fuselage and
the other, to the bending mode of the horizontal-fin
arrangement. The frequency of the fin arrangement is
slightly greater than the one obtained with the rear end
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of the fuselage fixed in space. It is probable that the
fuselage bending mode need not be considered. In any
case, the flutter speed calculated for each of the two cases
will not differ very much because the density involved
is about in the same ratio as the squares of the fre-
quencies involved. Only the vertical fundamental
bending frequency of the horizontal fin will therefore be
considered. This bending frequency may couple with
fin torsion and elevator motion. This motion is neces-
sarily symmetrical and simulates the motion of the
main wing system. Since the elevator has no particular
restraint to this motion, it is evident that an unbalanced
elevator is highly undesirable. As in the case of the
wing system, the most frequent cause of flutter is also
the flexure-aileron combination.

Horizontal flexure.—Horizontal flexure affects the
vertical fin or fins and may be separately considered as
a cantilever wing with an aileron. The rudder, which
takes the place of the aileron, has no particular restraint
to this motion and must therefore be carefully mass
balanced. )

Torsion.—Torsion is composed of a relatively low-
frequency type of flutter involving the fuselage and a
higher frequency type involving the fin tips, which may
be considered as fin flexure in opposite phase. This
type of flutter is not common because the great stiffness
of the torque tube prevents its occurrence (8 large).
The rudder is affected in the same manmer as for
horizontal flexure.

In summary, it may be said that the expected causes
of flutter are the in-phase motion of the horizontal fins
as flexure-elevator and the motion of the vertical fin in
flexure with rudder motions.

With two rudders disposed at the ends of the hori-
zontal fins, care must be taken that the flexure fre-
quency is sufficiently high. The mass of the rudders
at the ends of the horizontal fins also affects the param-
eters used in the fin-stability calculation; that is, the
density of the fins and the radius of gyration are in-
creased. The center-of-gravity location may also be
changed.

GROUND TESTS
DETERMINATION OF CENTER-OF-GRAVITY LOCATION

From the theory, it may be observed that the location
of the torsional stiffness axis is of fairly secondary im-
portance. The location of the center-of-gravity axis, on
the other hand, is of great importance. The application
of a very low-frequency (zero) torque will rotate the
wing around the torsional stiffness axis a; the application
of a very high frequency (mﬁmty) torque will cause
the mass center line to remain stationary. As the tor-
sional frequency for wings is several times larger than
the lowest bending frequency, it can be shown with all
desired accuracy that the axis observed for the tor-
sional frequency is the center-of-gravity line.
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Assume the wing to be vibrating around an axis at a
distance d behind the stiffness axis. The moment of
inertia reduced to the center of gravity is

I=M(rl—zl)b?
Moving the axis to d increases the moment of inertia to
M li—z Db+ Mx.—d)?h*=M(r2+d*—2dx,)b?
The corresponding torsional stiffness is C,+d?C,.
The frequency is consequently

o (CtdC)b?
Mot E—2dz,) b

Then
2 log w=log (C.+d?*Cy)b*—log Mb?*(r*+-d*—2dx,)

The wing will assume the state of vibration giving the
greatest frequency. By derivation, with respect to d,

dCh _ d—wa =0
C.+&C, ri+d*—2dz.
or dCt
3 2
d_xa—w M
Then
d=z 1
“1— (wp/w)?

or, with d known,
2o=0d[1— (wp/w)?]=2d for w,fe—0

That is, the center-of-gravity axis is slightly ahead of
the dynamic axis (assuming both axes to be normally
behind the stiffness axis). If the torsional frequency is
very large, they coincide (d=z.). (If the torsional fre-
quency is very low, d=0, giving the stiffness axis.)

In other words, the center-of-gravity location along a
finished wing can be determined by establishing the
dynamic torsional axis.

DIMENSIONAL CONSIDERATIONS

Proportionally increasing all dimensions of a wing
while retaining all details lowers the frequencies in in-
verse proportion to the size. The reference speed wb
therefore always remains the same, as do all other pa-
rameters including the wing density. The actual flutter
speed therefore depends on the shape but not on the size.
It is important to keep in mind, however, that the
reference is to wings or tails similar in all respects. In
reality, a lighter contruction is necessarily employed in
larger wing sizes, resulting in a weaker structure and a
general lowering of the critical flutter speed.

The foregoing considerations are significant in the
testing of models. Thus a true model constructed of
the same material as the full-scale airplane will have
the same flutter speed. For testing purposes, it is
very desirable to have a fairly low flutter speed. This
end may be achieved by employing models of special
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materials related to celluloid, which have a value of
VE[p nearly five times smaller than that of materials
normally used in airplane construction.

The most desirable condition would be to use a
material with the same density p as the airplane and
with the moduli £ and @, say, 1/n times the original
values. Fortunately, the density of the model wing
can be very simply corrected by using a suitable thick-
ness of the materials. Thus, if the density of the
material used is three times lower than that of the
original, the thickness of the skin and all the internal
members is increased by a factor of 3.

It should be further noted that the model can be
critically checked as to accuracy of reproduction by
direct measurements of its mechanical properties. In
other words, all the parameters, including the reference
quantity wb, are directly measured on the model itself.
The value of wb is usually close to the predicted value.
The important point, however, is that it is not neces-
sary to depend on a predicted theoretical value.

Thus the feasibility of conducting direct flutter tests
on models of actual airplanes or of its component parts
is indicated. Some work of this nature is now being
undertaken. The procedure may be of value in cases
that are difficult to treat theoretically and should be
of value in accumulating useful experience on special

designs.
GENERAL CONCLUSIONS

1. The two-dimensional theory has been wverified
within the limits of error in the determination of the
primary parameters.

2. The most essential three-dimensional effect is the
occurrence of distinet flutter bending modes, which
differ from the ordinary vibration modes in that they
tend to assume a form which approaches the next
higher vibration mode and exhibit a correspondingly
higher frequency. The flutter speed is consequently
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lower than that calculated on the basis of the lowest
vibration frequency and the flutter frequency itself is
higher. For ordinary damped structures, this effect
lowers the flutter speed calculated on the basis of the
lowest bending mode by only a few percent.

3. A cantilever wing flutters at a speed calculated
by using the constants for the most representative
section, which is located at apprommately three-
quarters of the semispan.

4. Aspect ratio and structural damping effects tend
to increase the flutter speed by a few percent above
that calculated for infinite aspect ratio and zero internal
damping.

5. The effect of mass balancing to bring the center
of gravity forward is essentially as predicted by theory.
The effect of nacelles is of lesser importance, but large
weights located at some distance away from the wing
and attached to it show a very detrimental effect on
the flutter speed.

6. Wing-aileron experimental studies show that the
characteristic flutter range predicted by the theory
exists and is in substantial agreement with the pre-
dicted values. A decrease in the unbalance and an
increase in the frequency ratio are both beneficial.
There exists, for each value of the unbalance, a certain
critical frequency ratio and, inversely, for each fre-
quency ratio, a certain critical value of the unbalance.

7. The considerable difficulty involved in the deter-
mination of the primary structural parameters includ-
ing the damping is recognized and will constitute one
of the chief problems of future flutter research.

LaneLEY MEMORIAL AERONAUTICAL LLABORATORY,
NaTioNaL ApvisorRY COMMITTEE FOR AERONAUTICS,
LawerLEY F18LD, VA., September 22, 1938.



APPENDIX

LIST OF NOTATION

e, angle of attack (fig. 40).

B, aileron angle (fig. 40).

h, vertical distance (fig. 40).

a= d—a; 'c‘z=i25 ete
dt d 2’ -

ag, Bo, o, @1, ¢2, amplitudes and phase angles.

b, half chord, used as reference unit length.

a, coordinate of axis of rotation (torsional axis)
(fig. 40). Location of stiffness axis in percentage
total chord measured from the leading edge is
1001—;-(1, or @ 2 (stlﬂilggs a,ms)__l.

¢, coordinate of aileron hinge axis (fig. 40). Location
of aileron hinge axis in percentage total chord

measured from leading edge is 1001_—2}-_c or

2 (aileron hinge)
v 100

p, mass of air per unit of volume.

M, mass of wing per unit span length.

2
k= Tzflb > the ratio of the mass of a eylinder of air of a

1.

diameter equal to the chord of. the wing to
the mass of the wing, both taken for equal
length along the span; this ratio may be
expressed as k=0.24(0%W) (p/po) where Wis
weight in pounds per foot span, b is in feet,
and p/p, 1s ratio of air density to standard
air. [The quantity oc=W/4b® (weight per
square foot per chord in feet) has been used
by British writers. Thus, x=(0.06/¢) (p/p0)-]

» location of center of gravity of wing-aileron
system measured from a (fig. 40); S., static
moment of wing-aileron per unit span length
referred to a. Location of center of gravity
in percentage total chord measured from the

leading edge is 1001+L2+”"
2 (center of gravity)
100

:Ep=&: reduced location of center of gravity of aileron
referred to ¢ (fig. 40). Sp, static moment of
aileron per unit span length referred to ¢.?

— S
L= 10

or a+Zoa=

1.

r.,=\/ ﬁ; radius of gyration of wing aileron referred
to a (fig. 40). I,, moment of inertia of
wing aileron about the elastic axis per unit
span length.

7'3=-\/ h%, reducedradius of gyration of aileron referred
to ¢ (fig. 40). Iz, moment of inertia of
aileron about ¢ per unit span length.

3 Note that A refers to the total wing mass and not to the mass of the aileron alone.
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C., torsional stiffness of wing around a per unit span
length.

C;, torsional stiffness of aileron around ¢ per unit
span length.

Ch, stiffness of wing in deflection per unit span length.

10, . .
coa=—\/ %5; natural angular frequency of torsional vibra-
% tion around a in vacuum (w.=2rf., where
f1is in cycles per second).

Qs’ natural angular frequency of torsional vibra-

wg=
# tions of aileron about c.
_ Oh . .
wr=- /=y natural angular frequency of wing in deflec-
tion.
Leodi Quorter . Trailing
egd;’;g chord  Midchord edge
= -2 ¢ /
a L.xz )I
Axis of rotatior
@l | : - — 79| __
v—- R : .
@ o ‘\\\‘ Z, A . Q-@
, c.g. of ‘em;/'r'e wingly

c.g. of ailerorr----

FIGURE 40.—Half chord b is used as the unit length. The positive directions of «,
B, and & are indieated by arrows. Note that a is measured from midchord and
that 7. is measured from the elastic axis positive to the right. Also note that s
is a “reduced” parameter and not the actual distance from the hinge to the ¢, g, of
the aileron.

t, time.

v, speed of forward motion.
vy, flutter or critical speed.

w, circular frequency of wing vibrations.

k=bv—w: reduced frequency=number of waves in the
wake 1n 2 distance equal to the semichord X 2.
1/k, reduced wave length=Ilength of one wave of the

wake in terms of a distance equal to the semi-
chord X 2.

F and @, functions of k in table 2.

2
Raa=—Aal+<%—a2>¥—(%+a —k]l;

1 1 Ty2G@ T2l
RaB=—ABI+'k—2A53+(§'+a> 2—7‘: + ~=s

Ba= _Ah1+(%+ a/>2k—G
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(
R ba=— al Tl2[

Byp=—=Bg+ szﬁs

T 2
Buy=—Bu—2228

2
Roo=— C’al—<%_ a>2G+ k;F

)26 _2F
EE

sz Tyu2G Ty 2

27 k

Tu 2G|, Ty 2F
Bo=—COn—5r Tt I
24

Rch='_0h1_ 3

L= —[ <2+a (Z—a )2F+Ad2:|
=g ~(5+e (3 +522F )+ o
L= ~(3+a)r]
B (prlon

1

T(Te28, Tuor) 5,

| 27

T,y
Ib},=%<2;;2F)
=3 (30 )pr+0a]
Icﬁ=%<%’ %Cg'i-g—:;ZF-i- C’Bz)

L, =%2F

Ly=7

_ 12/ 0. \2
Raa=Raa+QaX QaX= ?('{;)

_Te(er)
0, x="5(%)

2
9,,X=l<ﬂ>
K\ @

Ryp=Ry+ X

R—ch =ch + QhX

Taa= aa+gaQaX
Tos=TIs+gs%X

Tch= ch +!]h9hX

The quantities A, Ag, ete. and 2.X, QX, ete. are
defined under the calculation scheme (pp. 5-7). The
T’s are listed in table 2. The definitions of the 1”s
are given in reference 1, page 5, should other values
than those listed in the table be required.

v/bw,, flutter-speed coefficient (cases 1 and 3).
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vfbew,, flutter-speed coefficient (case 2).
wp/w, frequency ratio (case 1).
wsfwn, Irequency ratio (case 2).
wp/ws, Tfrequency ratio (case 3).

_ e 12 . . .
Vp=bw, « AR Fa divergence velocity.

Jay 98, gn, structural damping coefficients; wg corre-
sponds approximately to the wusual logarithmic
decrement.

M., Mps, magnitude of sinusoidal impressed torques in
the a and 8 degrees of freedom.

Py, magnitude of impressed force in the h degree of
freedom.

¥, phase angle.

ay ss, BofBst, holhs, peak response for the various
degrees of freedom.
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TABLE 1
E Yk F ~@ —2GJk 2F/k
@ 0.000 0.5000 | 0 (i} 0
10 .100 5006 | o124 | 00248 . 010012
6 . 16667 S5017 | .0206 . . 02787
4 -250 5037 | 0305 -01525 - 06296
3 .33333 . 5063 -0400 | .02667 -11%5
2 -500 .5129 -0577 .0577 . 2565
15 66667 | .5210 | .0736 -0048 - 4631
1.2 -83333 25300 | o877 | l1462 . 7361
1.0 1.000 5304 | [1003 ~2006 1.0788
.80 1.250 L5541 L1165 -2012 1.7316
66 1.51516 - 5699 L1308 -3064 2.6166
60 1.66667 | .5788 L1378 . 4593 3.2156
.56 178572 | 5857 | .1428 .5100 3.7353
~50 2.000 -5979 | .1507 -6028 4.7832
44 227273 6130 | 1592 7236 6.3326
40 2. 500 6250 | 1650 -8250 7.8125
34 2.94118 | .6469 1738 | 1022 11.192
30 3.33333 6650 | .1763 | 1195 14.778
24 4.16667 | .6989 | .1862 | 1.552 21,267
20 5.000 7276 | .1886 | 1.886 36.380
16 6. 250 7628 | L1876 | 2.345 50. 592
12 8.33333 -8063 | 1801 | 3.002 111,99
10 10. 000 .8320 | 1723 | 3.446 166. 4
08 12.500 8604 | 1604 | 4.010 268.9
06 16.66667 | .8020 | .1426 | 4.753 495.6
05 | 20.000 9000 | 1305 | 5.220 727.2
25.000 L9267 | 1160 | 5.800 1158.3
025 | 40000 9545 | .0872 | 6.976 3054.4
ol | 100000 .9821 0482 | 9.640 19648
0 @ 1.000 0 @
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TABLE 2
Valuesof T
—> -1 —0.5 0 0.1 0.2 0.3
Tyf=. —1.00000 —0.54008 —0.21221 —0.16539 —0.12490 —0.09064
Tof3 —1.25000 —. 38882 —. 08191 —. 05434 —. 03420 —. 02031
Tifzr(= —Ch2)omm-mmeev —1.00000 —. 80450 —. 50000 —.43644 —.37353 —.31192
T/ —1.12500 —.37922 —.06250 —.03540 —.01672 —.00480
Tulx 1. 00000 -94233 .81831 178483 74779 .70666
Tuf2s...- 1. 50000 1.01125 - 56831 .48813 L41146 .33870
Tiaf2x . 50000 ~20675 .06831 - 05168 .03793 - 02679
ol po 0 —. 06891 —. 10610, —.10452 —. 09980 —. 00105
Am-ﬁt—"’ 0 .13783 .31831 . 34789 . 37426 .39474
B.,:-—i- p—T—%)- 1. 50000 .87342 . 35611 27909 .21187 . 15556
Bp=— 2‘5" 1. 50000 .81355 . 28416 .21304 .15369 .10565
Bps T’—f,"T"' 0 .05376 . 05783 05275 .04643 .03922
—— 0.4 0.5 0.6 0.7 0.8 0.9 1.0
—0.06238 —0.04008 —0.02322 —0.01145 —0.00420 —0.00076] 0
—.01107 —. 00539 —. 00223 —. 00071 —. 00014 —.o0001f 0
—. 25231 —.19550 —.14238 —. ~.05 —.o01868] o0
—. 00161 . 00421 -00428 -00302 -00144 . 0
- 66075 . . 54982 - 48050 . 30582 c28031] 0
.27029 ~20675 .14874 - 09712 -05314 .01889] 0
.01798 L0125 - 00636 -00306 -00110 00020 ©
—. 08169 —. 06891 —. 05433 —. 03864 —. 02202 —.00870] ©
. 40844 . 41350 . 40744 . 38644 .34378 .26843] 0
.10685 . 06892 .04008 . 01984 . 00830 .00131] 0
. 06820 .04042 .02118 .00914 00277 .00035] 0
. 03156 .02384 . 01651 . 00999 . 00476 002711 0
The expressions for the 7”s are listed in reference 1, page 5.
TABLE 3
Values of Rz’
Roa=—Aat+ Rea’
a
Uk —0.5 —0.45 —0.4 —03 —0.2 —0.1 0
0 0 0 0 0 0 0 0
.100 0 —. 00061840 —. 00122 ~.00240 —. 00352 —. 00460 —. 00563
L6667 | 0 —. 0017193 ~. 00341 —. 00567 - —. 00980 —. 01079 —. 015666
-250 0 —. 0038724 —. 00767 —. 01503 —. 02209 - —. 03530
.33333 0 —. 0068918 —. 01365 —. 02677 —. 03935 —. 05140 —. 06202
. 500 0 —. 015566 —. 03084 —. 06053 —. 08607 —. 11645 —. 14268
66667 | © —. 027658 —. 05484 —. 10779 —. 15884 —. 20799 —. 25525
. 83333 0 —. 043749 —. 08677 ~—. 17061 —. 25153 —. 32053 -
1.000 0 —. 063468 —.12593 —. 24786 —. 36577 —. 47066 —. 58055
1.250 0 —. 10041 —.19937 —. 39201 —. 58063 —. 76253 —. 93860
1.51516 | O —. 14966 —. 29734 —. 58674 —. 86822 —1.14178 —1. 40740
166667 | 0 —. 18260 —. 36200 —. 71661 ~1.06113 —1.30647 —1.72
1.78572 0 —. 21098 —. 41943 —. 82366 —1.22769 —1. 61652 —1.990515
2. 000 0 —. 26779 —. 53257 ~1.05309 —1.56125 —~2.05795 —2. 54230
2.27273 0 —. 35100 —. 69838 —1.38230 —2.05174 ~2, 70670 —3.34720
2. 500 0 —. 42081 — —1. 60450 —2. 51700 —3.32300 —4.,11250
2.94118 0 —. 60814 —1.21120 —~2.40192 —3.57222 —4,72208 —5. 85150
3.33333 0 —. 79566 —1.58535 —3. 14680 —4. 68435 —6. 19800 —17.68775
416667 | 0 —1.2871 —2. 56638 —5.10072 —7. 60602 —10.07728 —12. 52150
5.000 0 —1.9086 ~3.80774 —7.57776 —11.31006 —15.00464 —18. 66150
6. 250 0 ~3.0010 —6.17025 —12.29360 —18. 37005 —24. 39060 —30. 38225
3. 33333 0 —5.7421 —11. 46918 —22. 87832 —34. 22742 —45.51648 —56. 74550
10. 000 0 ~—8.4837 —16. 95014 —33.83136 —50. 64366 —67.38704 —84. 06150
12. 500 0 —13.635 —27.25090 —54. 42160 —81.51210 | —108.52240 | —135.45250
16. 66667 0 —25.006 —49, 93777 —99.88048 | —149.67813 | —190.38072 | —248.98825
20. 000 0 —36. 608 —73.18080 | —146.27520 | —219.25620 | —292.313280 | —364.90500




MECHANISM OF FLUTTER

TABLE 3—Continued
Values of /..’

Toe=1/k I..""
~ a
1/1:\ —0.5 0.45 0.4 -03 —0.2 —0.1 o
0 1.00000 | 0.90250 | 0.81000 | 0.64000 | 0.48000 | 0.36000 | o.25000
.100 1. 00000 . 00256 . 81014 . 64031 . 49049 . 36070 . 25094
.16667 | 1.00000 .90268 .81038 .64083 | .49135 .36192 | .25288
.250 1. 00000 .90291 . 81086 . 64187 . 49303 .36432 | . 25678
.33333 | 1.00000 | .90323 . 81154 . 64331 . 49535 .36764 | 26019
.500 1.00000 | .90415 -81345 - 64741 - 50180 37689 . 27240
.66667 | 1.00000 . 90524 . 81570 . 65224 50062 | .38784 . 28690
.83333 | 1.00000 . 90696 .81922 .65062 | 52126 .40404 . 30810
1,000 1. 00000 . 00879 . 82207 . 66751 . 53363 .42133 . 33060
1.250 100000 | .91192 | .82038 | .68093 . 55464 . 45051 - 36855
1.51516 | 1.00000 . 01568 . 83706 . 69691 57956 | .48501 .40325
1.66667 | 1.00000 . 91707 84175 . 70664 . 50469 . 50590 . 44025
1.78572 | 1.00000 . 01986 84557 L T1457 - 60701 . 52286 .46215
. 000 1. 00000 . 92334 . 85266 172023 .62972 . 55413 - 50245
2.271273 | 100000 . 92704 .86202 . 74856 . 65962 . 50520 . 55530
2,500 1.00000 . 93187 . 87000 . 76500 . 68500 . 63000 . 60000
2.94118 | 1.00000 - 93964 . 88576 .79739 . 73490 . 69829 - 68755
3.33333 | 1.00060 . 94657 - 89980 .82620 77920 . 75960 . 76500
4,16667 | 1.00000 . 96120 . 92049 . 88675 . 87206 . 88533 . 92655
5.000 1. 00000 . 97518 . 05763 . 94437 96021 | 1.00515 | 1.07920
6.250 1.00000 . 09478 99720 | 1.02490 | 1.08312 | 1.17186 | 1. 20110
8.33333 | 1.00000 | 1.0235 1.05507 | 1.24238 | 1.26195 | 1.41378 | 159785
10.000 1.00000 | 1.0433 1.00484 | 1.32206 | 1.38436 | 1.57904 | 1.80700
2. 500 1.00000 | 1.0688 114613 | 1.42667 | 1.54163 | 1.70101 | 2.07480
16.66667 | 1.00000 | 1.1029 1.21474 | 1.56516 | 1.75126 | 2.07304 | 2.43050
. 000 1.00000 | 1.1246 1.25838 | 1.65312 | 1.88422 | 2.25168 | 2.65550
TABLE 4
Values of Rbp”
Rys=—Bau+ Rps"”
e 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 0 0
.100 .00123 .00100 .00078 . 00060 . 0004 . 00032 . 00021 . 00011 . 00005 .00001 | O
. 16667 .00342 -00267 .00219 .00168 -00124 . 00087 00057 - 00032 . 00014 0004 | 0
. 250 .00768 . 00623 .00493 .00378 . 00279 .00196 .00126 -00071 .00032 .00008 | 0
.33333 . 01367 .01109 . 00877 .00673 . 004908 . 00349 .00225 .00119 .00056 00015 | 0
.500 .03085 - 02505 .01978 .01519 L0112 . 00787 . 00507 - 00290 .00126 00033 | 0
. 66667 . 05404 . 04461 . 03525 .02706 .01999 -01402 - 00905 -00515 .00225 00059 | o
.83333 - 08647 .07018 . 05540 . 04250 .03137 .02194 01419 .00806 .00352 .00092 | 0.
. 000 .12517 .10158 .08015 .06146 . 04535 . 03177 .02048 .01164 -00510 .00133 | 0
1.250 .19729 .16000 .12621 . 09670 -07130 . 04990 . 03214 .01825 .00798 .00208 | 0
1.51516 .20270 .23723 . 18699 .14317 .10547 L07373 . 04744 . 02690 .01175 00307 | 0
1. 66667 .35614 . 28854 .22733 .17398 .12810 . 08952 . 05755 .03262 . 01425 00371 | 0
1.78572 . 41062 .33258 . 26195 -20040 . 14750 .10302 . 06620 .03750 .01637 .00426 | 0
2,000 .51910 . 42022 .33078 - 25200 .18595 .12980 .08335 04717 .02058 .00535 | 0
227273 . 67602 . 54753 .43071 .32002 24177 .16857 .10813 .06113 . 02664 .00601 | O
2,500 . 82550 . 66738 .52463 . 40050 . 20407 .20488 .13131 . 07417 .03230 00838 | 0
2.94118 1.15907 .93605 - 73500 . 56040 . 41094 . 28588 .18296 .10318 .04486 01162 | 0
3.33333 1. 50670 . 21566 . 95364 . 72637 . 53204 .36968 . 23630 .13308 .05779 .01405 | 0
4,16667 2.40775 1.93023 | 1.51852 | 1.15435 .84375 . 58495 . 37303 .20058 . 09080 102342 | 0
000 3.53385 2.84190 | 2.22193 | 1.68628 | 1.23036 85134 . 54187 .30380 .13137 .03380 | 0
. 250 5. 65191 4,00026 | 3.54031 | 2.68138 | 1.95216 | 1.34764 . 85572 . 47853 . 20644 .05206 | 0
8.33333 | 10,34067 8.28124 | 6.44720 | 4.87081 | 3.53670 | 2.43454 | 1.54135 .85928 .36960 09447 | ©
. 000 1614353 | 1211112 | 9.41588 | 7.10321 | 5.14958 . 5388 2.23667 | 1.24464 .53443 .13633 | ©
TABLE 4—Continued
Values of I;s"!
Iyp=1/k I45""
m ¢ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 0.32208 | 0.23827 | 0.16930 | 0.11472 | 0.07306 | 0.04275 | 0.02213 | 0.00944 | 0.00283 | 0.00035 | O
. 100 . 32289 . 23820 . 16925 .11468 . 07304 . 04273 . 02212 . 00044 .00283 .00035 | 0
. 16667 .32273 . 23808 -16916 . 11462 - 07300 . 04269 .02211 . 00943 .00283 200035 | 0
0 .32242 . 23784 .16809 . 11450 .07292 . 04260 -02209 - 00942 .00282 100035 | 0
.33333 .32198 . 23751 .16874 .11433 .07280 04243 .02205 . 00940 .00282 00035 | 0
.500 .32075 - 23658 .16806 .11386 -07250 .04241 .02195 . 00937 .00280 .00035 | 0
- 66667 .31831 . 23548 16727 11331 .07213 . 04220 .02184 ~00931 -00279 00034 | o
.83333 .31714 .23385 .16609 11249 - 07161 .04183 - 02168 - 00925 -00277 00034 | 0
1,000 .31483 . 23212 .16484 .11163 . 07106 . 04156 . 02150 -00917 - 00274 -0003¢ | 0
1.250 .31080 .22910 .16273 .11019 . 07013 -04101 .02121 - 00004 .00271 .0003¢ | 0
1.51516 .30625 .22572 .16024 .10849 . 06903 . 04036 . 02087 - 00890 - 00267 00033 | 0
1. 66667 .30343 . 22362 .15873 10746 .06837 . 03997 - 02067 .00881 - 00264 .00033 | 0
1.78572 .30112 . 22190 15752 . 10662 . 06783 . 03966 - 02050 .00874 -00262 00033 | 0
, 000 . 20688 . 21876 .15526 . 10509 . 06685 . 03908 .02021 .00861 . 00257 .00033 | O
2,272713 . 29130 - 21462 .15231 .10307 - 06556 .03832 - 01981 - 00845 00252 | .00032 | ©
2,500 . 28657 L21112 .14980 -10137 06448 . 03768 .01948 .00831 .00249 00031 | 0
2.94118 . 27728 .20423 L1491 .09803 .06235 . 03643 -01883 .00803 . 00240 60030 | 0
3,33333 . 26800 -19813 . 14056 - 09509 . 06046 .03533 01826 .00778 200232 | .00029 | 0
4.16667 .25166 .18536 .13152 .08894 - 05655 - 03305 .01708 -00728 .00217 .00027 | o0
5.000 .23522 .17325 .12202 .08315 . 05286 - 03089 . 01596 - 00681 - 00203 00025 | 0
6.250 -21220 . . 11100 . 07510 . 04775 .02791 . 01442 . 00615 -00183 00023 | 0
8.33333 .17895 . 13197 .09372 - 06345 .04038 . 02362 . 01220 .00521 .00155 00019 | o
0.000 .15613 .11525 .08194 . 05551 .03535 .02069 .01070 . 00457 .00135 .00017 | 0
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TABLE I.—EXPERIMENTAL RESULTS OF FLUTTER INVESTIGATION

~ ~ . < o3 w
~ s | = & - le. g location| & k] 3 ~
s | & g | & |3 g (percent % - Ed Ll
8 E g ] 2 % | cbord from | 7 = & &
£ S =2 S = 2 L. E.) St 2 .
3 5| © 5 & S 8= | 5S4 s g
w | B2l BlE]|l2t & g8 | 88 | ~ 8 S | a
S = S < .| B2 a7
,,, g =~ 0 &0 & (%5 =2 o g bl el
3 £ 0 =] =4 a g — = Test conditions and remarks S 3 ]
SO I = 3 | E 3 g | < ng | B3 = < ge| 8 =
g8l 8 |s|s|Blgle|8 |~ #2| a8 | B B 2 3 |3
3 18] 8 a 2 g 2 ] 8 5] = [ S=] 3 3 = = > 8
a g L= 2 = 8 = 14 a E=) B E] e ke b
elEl3 2 lzlelel3|e |58 |3 |32 S || 2|8
gls]| 8 B ] 5 E] B ] k] 2 |8 g g g ° s 35 1
Bl 2 | 8 g | = P (= = s | 2 |8 o Z 2 ] E] 2 |1 a
miplela|l2|]8|s|a|ja |00 |= 8 [ & < (&= | B
10| 1 g 1109 6.8)19.7 15.0 41,2 1 41.2 | 30.0] 0.3125 | 7.32 | Tests on wing 1 were preliminary. | 20-2 [2.283X10-3
S A stop was used.
@ Later tests employed a screen instead.| 20-3 |2.278
= Damping test 204 ...
2 Run 20-3 repeated. . m-oveeeeacaamaan 20-5 |2.274
S ‘Weight, 0.028 lb on L. E. 18in.from | 20-8 {2.265
> tip.
11 [2A 'g 1.20] 7271210 18.1 41.2 ] 42.3 | 30.0 | 0.3125 | 36.50 St(()tp ufsie%tal)l other tests screen used | 20-10 |2.256 15,0 | 183.0
= - ip flutter).
° Model support fractured...ccooeaeeo- 20-11 |.... 203.0
= Model repaired 20-15 12.154 10.2 | 2020 ||&
Py Restrammg wires 17 in. from tip, | 20-16 |2.216 cemeea| 1610 || ny
- 3.6 in. from L. g
& 16.7 Nacelle 6.10 1b, placed 2 ft. from top, | 20-17 |2.116 9.45 | 216.0 ||
£ 2.70 in. ahead of c. ~
& 17.0 Nacelle placed 2 ft. rrom top, 1.34 in. | 20-18 |2.170 197.0 || 4
g back of c. g. i
s Run 20-16 repeated 20-19 [2.225 =
E 14.8 Counterwexght 3.071b.at L. E. 13in. | 20-20 |2.173
from tip.
Run 20—20 r@nmfod 20-21 |2.174
11 {2B| < 1.3t | 7.7]20.8 17.8 42,5 30.0 35.95 | Plain; no weight attached.... ... 20-23 12,159 10.2 | 205.9
S Dlsk 12.771b. 12-in. diam, on bottom; | 20-24 (2,204 8.36 | 164.2
8 c. g. of disk on ¢. g. of airfoil.
g Disk 12.451b. 17-in. dxam insame po- | 20-25 |2.228 7.36 [ 1215 ||
a sition as 20-24. o
@ Disk as in 20-25 placed 1 in. ahead of | 20-26 |2. 232 7.48 | 116.2 9
e g.
Disk as in 20-25 placed 1 in. back of | 20-27 |2.214 7.25 | 1319 ||~
c.g. 3
Run 50-23 repeated 2028 [2.149 | 205.0 || &
. ‘Airfoil tip restrained by wires-.--_. 20-29 |2.164 ..o 205.1 |[*
Run 20-25 repeated 20-30 |2.232 |awea-a 120.7
Run 20-23 repeated 20-31 |2.146  |....-. 109.3
Same as 20-31, movies taken ... 20-32 [2.144  |...._. 08,
Plain; restrammg wires8in. from tip. | 20-33 12,122 10.8 | 208.0 |z,
Plam, restraining wires 60 in. from ¢ip. | 20-34 12,171 13.1 | 169.5 || 2s
Restraining wires 40 in. from tip; | 20-35 12.053 8.24 M
model broke near tip.
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TABLE I—EXPERIMENTAL RESULTS OF FLUTTER INVESTIGATION—Continued
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~ ~ L=} - -
- 1 o] o < e g. location| & S 8 -~
B 2 4 2 3 g ?petcent £ - E =
2121523 g | § |chord from | S = g &
2l8ls18lg|l3s( -5 || S )
|2l E|Bl&E|3 |5 My ER | 4 B | & |a
& A B < S . =) 3 a =
- ) w8 & &d | 2 . g3 » |3
8 2 w | 8B ® |8 ~ g og | w8 = Test conditions and remarks o 32| & 2
AEIEREAE AR R ER R S| 2% | B 5 €12 | s
2 |B|E| 5|8 8|2 g2l | 23|= |35 2 5 = -
Sl = 2 o =2 = 8 < R 4 ] 1 Z =) 5 & k-1
[ a =] -~ a =1 19 =1 bad 0 53 8 S8 l'o'
=] to -3 = 7] Fry g 5 > = a L= = = g
ElE|E2 8|5 |8 (2|8 |23 g |5 £ 5 5 |2 |2 |2
EiE|lE|R|la|lBE|ls|&|la |82 |a 3 = &5 2 |= B | B
11 |2C (g 140 8.2(22.5 | ... 18,8 |.ooos 42,5 30.0 Model 2B repaired 20-73 [2.133X16-3 220.4
&d |1.22] 7.2]20.8 16.2 Wti_th 3ioi-lli§counterweight1in. from | 20-74 {2.169 196.8
- ipat L. E.
'é:": 1,201 82| 22,4 [.o.... 15.8 Counterweight 1Bin. from tipat L. B.| 20-75 |2.152 210.5 ||8®
S5 | 134 8.0f22.2 16.0 Counterweight 25in. from tipat L. E_| 20-76 2.101 244.6 Do
89 |138| 7622520 16.8 Counterweight 37in. from tipat L. E_| 20~77 [2.119 235.7 H&
84 11,39 7.8[22.0)...._. 17.4 Counterweight49in.from tipat L. E_| 20-78 [2.122 | - 232,2
% §8i 133 | 80212 18.2 Counterweight 61 in. from tip at L. E_| 20-79 [2.136 219.8
255 .24 7.7(19.8 ... 13.8 ‘With weightssimultaneously at 13in., | 20-81 [2.056  |____ 204.3
~ 387 in., and 61 in. from tip.
k] 1,657 6.8]16.5]30.7 291 |eeunen 42.5 | 42.0 | 30.0 |occceeeo 20.48 | Plain tapered wing. 16.4 | 216.0
N Run 20-22repeated... | 20-68 12150  |._.___ 214,9
12| 3| & |1.64] 52)13.1|28.4(| 89378 Nacells 6.10 1b.; c. g. 3.10 ia. back of 109.2
- c. g. of airfoil.
1 9.1 N%qeu% placed 1.10 in. back of c. g. | 20-70 j2.245  |._.... 91.0
] ig. 25.
3 8.8 Nacelle placed 2.80 in. shead of ¢. g...| 20-71 {2240 8.50 | 90.4
[2’, Run 20-68 repeated 20-72 {2.149 14.0 | 213.3
13| 4|85 |207]| 60[13.3|24.0(36.2) _____ 41.2 | 41.5 16.88 | Violent flutter suddenly. Wing bent | 20-67 [2.174 203.9 | .z
5»;3,5 out of shape. Fig. 20. ot
i
12| 3| = 1.65f 6.8 16.5)30.7 | 20.1 42,51 42.0 20.48 Resyraining wires 59 in. from tip at | 20-80 |2.187  |._____ 211.1
a stiffness axis, .
g Sarme except wires 2in. ahead of stiff- | 20-90 [2.200  |._____ 204.4
= nessaxis. . .
= Same except wires 4 in. back of stiff- | 20-91 ~
2 ness axis, 3]
I Restraining wires 40 in. from tip at | 20-93 |2.28¢4  [._____ 155.8 |33
(1 stiffness axis, =
Restraining wires 17 in. from tip at | 20-04 [2.220  |._.._. 152.9
stiffness axis.
Restraining wires 1 in. from tip at | 20-95 [2.182  |._____ 211.4
stiffness axis,
Restraining wires 27 in. from tip at | 20-96 |2.202 | _____ 200.8
stiffness axis,
16} 6 2,30 | 12.8 | 31.2 19.2 42.5145.2 3.45 | Rectangular wooden model; 8l-in. | 20-82 {2.268  |.__._. 73.8
span.
16 7 4.92 | 25.0 | 67.2 35.8 42.5 | 43.9 6.01 | Tapered wooden model; completely | 20-92 [2.199  [._.___ 205.6
destroyed by violent flutter.
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TABLE JA.—WING-AILERON FLUTTER TESTS

First |Aileron Lpt\;vgi UP or
Wing | Aileron| bed~| fre- | . cor _ el critical
n‘x)igé Adleron (see fig. 14) | weight | weight (mc;_ q%gg-cy nota- Test conditions and remarks Run Aiirt;Iepns v(exlx?cgy Ai{t;iepns- velocity
@b.) { @b tion) ’ By ' (m. p.
cles{ cles/ )
sec. sec.) *
[ 1§ 1 S —— 44.841 0.950 | 10.68]| 0 0.0019 | Aileron with 3 free hinges._ .« coccucmcccmcacnaaool 20-36 | 2,273X10~3 53.9
AV. . 618 0 20-37 | 2.278 50.7
AIT .950 5.756 Aileron with spring 20-38 | 2.273 50.4
V. .618 7.91 20-39 | 2.271 42,4 |acmaomaas JSTRSIN
AIXL . 950 12.5 2040 | 2.269 76.8
AT 8. ‘Theoretical results for aileron ATL shownin fig. 26.| 2041 | 2.3 44.8
AIL 11.90 20-42 | 2.301 55.4 aan
AIL 1.0 20-43 2.240X1073| 147.0
AIL 12.5 20-44 . 161,
Al 13.1 20-45 | 2.259 98.4 |accucoumnnn|acnananan
ATI 9.67 20-46 | 2.283 57.4 1 2.236 1569.3
AII 9.17 20-47 | 2.268 2,162 193.0
AIIL 5.75 20-48 | 2.245 52.6 | 2.165 109,
AL 0 Hinges free. 2049 | 2.242 §8.3 | 2.138 226.1
AL 13.3 20-50 1 2.242 60.3 | 2.200 125.7
ATI 10.8 N ) 20-51 | 2.240 65.0 | 2.190 140.9
AIT 0 3 {gea Il“l_ingfg with aileron counterweight, 0.557 | 20-52 No flutter
., Fig. 15.
AIL 0 Counterweight, 0.4521b 20-63 No flutter
AIL 0 Counterweight, 0.346 1D v o ool 20-54 | 2.249 75.2 | 2,243 206.1
AIT 0 Counterweight, 0.3981b__ ool 20-55 | 2.243 99,6 | 2.173 107.8
AIT 3.00 do 20-56 | 2.243 99.9 | 2.193 167.
AII 6.92 do. 20-57 | 2.262 62.8 ] 2.218 147.1
AL . 567 0 2 {ree hinge: 20-58 | 2.262 65.3 | 2.163 218.7
AVIL .300 0 3 free hinges. 20-59 | 2. 259 57.8 | 2.221 105, 7
AIIL 1.43 0 4 free hinges, - 2.250 60.2 | 2.161 205.3
ATIT. 0 4 fres hinges with lead for damping. -ceccceman.-. 20-61 | 2.251 52,21 2.1 146.3
ATIL 0 do. 20-63 | 2.261 78.0 | 2.171 100.6
AL 0 do 20-64 | 2.255 97.8 | 2,150 223.2
AXIT 4.67 do. 20-65 | 2.259 67.3 | 2.178 160.8
ATIIL - 6.00 PRI 1) 20-66 ( 2. 260 63.8 | 2.210 161. 6
AVIIL 2.01 0 Hinge-pin position varied as shown in fig. 27_...| 20-83 | 2.285 .4 | 2.178 230, &
AVIIL. 0 --—-.do 20-84 | 2.281 93.6 | 2.143 G0.
AVIOL 0 do. 20-86 No flutter
AVIII. 0 do. 20-87 | 2.250 .5 | 2.098 200.8
AVIII 7.00 do. 20-88 | 2.259 41.11] 2,130 264.1




